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ABSTRACT

In this paper, illuminated by the great success of Universal Back-
groundModeling (UBM) for speech/speaker recognition, we present
a new algorithm for face recognition. On the one hand, we encode
each face image as an ensemble of X-Y patches, which integrate both
local appearance and shape information. These X-Y patch repre-
sentation provides the possibility to compare two spatially different
patches, and consequently alleviates the requirement of exact pixel-
wise alignment. On the other hand, we train the UBM based on the
X-Y patches from the images of differen subjects, and then automat-
ically adapt the UBM for specific subject, and finally face recogni-
tion is conducted by comparing the ratio of the likelihoods from the
model for specific subject and UBM. UBM elicits the algorithmic ro-
bustness to image occlusion since the occluded patches may not con-
tribute evidence to any subjects. Comparison experiments with the
state-of-the-art subspace learning algorithms, on the popular CMU
PIE face database and with varieties of configurations, demonstrate
that our proposed algorithm brings significant improvement in face
recognition accuracy, and also show the algorithmic robustness to
image occlusions.

Index Terms— Appearance, Shape, X-Y Patches, Face Recog-
nition.

1. INTRODUCTION

Face recognition has been an active research topic for several decades.
Owing to the wide applications in biometrics, Human Computer In-
terface (HCI), and many other vision related fields, many algorithms
have been proposed for providing different solutions. These algo-
rithms can be roughly divided into two categories: appearance based
and model based algorithms.

The appearance based category can be further divided into holis-
tic and part-based algorithms. For holistic algorithms, the facial im-
age is treated as a concatenated vector, and often dimensionality re-
duction techniques [6, 17], such as Principal Component Analysis
(PCA) [15], Linear Discriminant Analysis (LDA) [4] and Indepen-
dent Component Analysis (ICA) [10], are utilized for feature ex-
traction before formal classification. PCA/LDA based algorithms
consider the whole face image as a single feature vector, and hence
implicitly assume the pixel-wise alignment between the probe and
gallery images. However, pixel-wise alignment is often difficult or
even impossible to achieve in real scenarios, especially for fully au-
tomatic systems. It brings the robustness issue of the traditional
PCA/LDA based algorithms. Part-based algorithms instead work on
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image parts corresponding to specific facial features such as eyes,
nose tip, mouse corners. Separate appearance models are learnt for
different parts, and the final classification is conducted by fusing the
outputs from all the parts [18]. In addition to the appearance of these
parts, the shape information for these parts may also be taken into ac-
count for the classification. Wiskott et al. [16] proposed to represent
human face as a undirected graph with nodes located at the fiducial
points (eyes, nose tip, mouth corners, etc.), and the edges connect-
ing the nodes are used to encode the geometric constraints of the
human face. Heisele et. al [8] presented an algorithm to locate facial
components, and them concatenate them into a long feature vector
followed by Support Vector Machine (SVM) for classification.

In this paper, we present a new flexible representation, called
X-Y Patches, for encoding the human faces. X-Y patches are local-
ized and include both local appearance and relative coordinates in-
formation. In this sense, X-Y patch is a joint appearance and shape
descriptor. The human face is then represented as a bag of X-Y
patches. As the x-y coordinates are included in the patches, the com-
parison of the descriptors from different positions can be conducted
in a flexible manner: on the one hand, two patches with the same ap-
pearance yet slight mismatch in spatial domain may be considered
relatively similar; and on the other hand, two patches with the same
appearance yet far way in spatial domain will be considered differ-
ent. In this sense, the proposed descriptor alleviates the requirement
of pixel-wise alignment and is robust to small spatial misalignment
problem, which is often encountered in real applications. Instead of
localizing the facial features, we adopt dense sampling scheme to
extract the local X-Y patches from the facial images.

Based on this new descriptor, we conduct the face recognition by
borrowing the idea of Universal Background Modeling (UBM) [7],
which is widely used for speaker identification. First, a Gaussian
Mixture Model based UBM is constructed for all the X-Y patches
from the human face images of different subjects. The purpose of
UBM is to encode the universal prior knowledge of X-Y patches.
For a specific subject, Maximum A Posterior (MAP) adaptation [5]
is used for adapting the UBM to specific subject based on all the
X-Y patches extracted from all the images of this specific subject.
Finally, the ratio of the likelihood from the adapted UBM for a spe-
cific subject and likelihood from the original UBM is used as score
output for each specific subject, and the classification is conducted
by comparing all these scores.

2. X-Y PATCHES

Local patches have been widely adopted for appearance modeling
in computer vision literature [11]. Also recently, systems based
on local patches followed by Bag Of Words (BOW) modeling have
achieved great success in object recognition [9]. However, a major
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limitation of conventional patch based algorithm is that the spatial
information is not well utilized while the spatial cue often plays an
important role for visual appearance modeling [19]. Intuitively, the
visual appearance modeling is the modeling of joint appearance and
shape information. Motivated by these observations, we present for
object representation a new descriptor, called X-Y patches which
concatenate the x,y coordinates into the appearance features for a
certain local patch, that is,

AXY = (A, px, py), (1)

where px and py are the coordinates, and A is the appearance fea-
ture vector of the local patch. In this paper, we use the DCT trans-
form of the normalized pixel intensities as appearance features for
A. The normalization is transforming each local patch to be of zero
mean and unit variance, and we adopt dense sample grid in the im-
age plane to extract all the X-Y patches. An illustration of the X-Y
patch extraction is displayed in Figure 1.

3. UNIVERSAL BACKGROUNDMODELING

After the feature extraction process, each face image is represented
as an ensemble of X-Y patches. To model this ensemble in a vec-
tor space, Gaussian Mixture Model (GMM) [5] is a good solution
owing to its flexibility and scalability. If the training set of each
subject is sufficiently large, we can train a GMM for each subject.
However, the training set of each subject is usually not able to cover
all possible variations, such as different poses, illuminations and oc-
clusions. To circumvent this issue of limited training set, we adopt
the universal background modeling scheme which is widely used in
speech/speaker recognition literature [7]:
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where λ = [λ1, λ2, · · · , λM ] are the parameters of GMM, x is
the extracted D-dimensional feature vector, e.g. AXY , wi is the
prior probability of ith component, and N(x|μi,Σi) is a multivari-
ate Gaussian density, with mean vector μi and covariance matrixΣi.
Note that

∑M
i=1 wi = 1. Pi(·|λ) denotes the likelihood function of

the ith component in GMM. For simplicity, the covariance matrix
Σi is usually set to be a diagonal matrix to lower the computation
cost. The Maximum Likelihood (ML) estimation of the parameters
can be obtained via Expectation Maximization (EM) algorithm [3].

Denote the log-likelihood of the sample x from GMM as

L(x|λ) = log
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Let the posterior probability of each component given the observa-
tion z as γi(x) =
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where Ni(x) = N(x|μi,Σi) and (12) is from the Kullback-Leibler
divergence property. From the derivation, we can see that the UBM
can be roughly considered as a projection which projects x into the
component space (logNj(x) and computes the local scoring at each
component (γj(x)).

4. FACE RECOGNITION BY UBM ADAPTATION

As mentioned in previous section, the UBM essentially defines a
projection from original feature space to the component spaces. Two
X-Y patches are considered similar only if the projected components
are similar. This characteristic provides a natural mechanism for
handling occlusion since the occluded X-Y patches are very differ-
ent from the normal X-Y patches and consequently will not provide
evidence for any subject in final classification.

The UBM is trained on a large amount of X-Y patches from
different face images of different subjects. It essentially describes
the distribution of general X-Y patches of human face. To gener-
ate subject-specific face model, we adopt the Maximum A Posterior
(MAP) adaptation [5] as follows:

γ(i|AXY , λ) =
wiPi(AXY |λ)

∑M
j=1 wjPj(AXY |λ)

(13)

γ(i|λ) =
∑

px,py

γ(i|AXY , λ) (14)
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1

γ(i|λ)

∑
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μ̂i = μi +
γ(i|λ)

γ(i|λ) + α
(μ̄i − μi) (16)

where γ(i|AXY , λ) is the posterior probability of the ith component
given the observation AXY . γ(i|λ) is the soft count of observa-
tions which belong to the ith component. μ̄i is the sample mean of
ith component given the training observations {AXY }Tt=1 and μ̂i is
the adapted mean of ith component from the background mean μi.
The smoothing factor γ(i|λ)

γ(i|λ)+α
is designed to incorporate the num-

ber of observations into the final adapted mean. With this smoothing
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Fig. 1. An illustration of extracting the X-Y patches from one face image in CMU PIE [14] database.

Algorithm Train Train Train Train
(%) 5 10 15 20

Eigenface 75.66 63.54 54.8 47.16
Fisherface 48.73 33.58 26.78 21.11

Laplacianface 62.68 36.15 23.76 17.65
LSDA 53.4 30.51 21.83 15.13
Patches 35.69 21.70 17.44 14.80

X-Y Patches 31.13 16.11 11.3 9.24

Table 1. Comparison (error rate) of face recognition algorithms
on the CMU PIE database with different experiment configurations.
Note that Patchesmeans our algorithm based on patches without co-
ordinate information.

factor, the adapted mean will adaptively adjust the mean vector ac-
cording to the amount of observations on every component. If there
are sufficient observations on one component, the adapted mean will
rely more upon the sample mean for better data fidelity, otherwise
it will more depend on the background mean. In testing stage, log-
likelihood ratio between target subject and background models is
used to score the test image, and the identity is determined as the
subject with the largest score.

5. EXPERIMENTS

We evaluate the performance of the proposed X-Y patches based al-
gorithm with real face recognition experiments. The state-of-the-art
algorithms are mainly subspace learning based algorithms, such as
Eigenfaces [15], Fisherfaces [1], Laplacianfaces [6], and LSDA [2].
We compare the proposed algorithm with these four most popular
and latest subspace algorithms. Here, PCA is unsupervised while
the other four are all supervised. We use the benchmark databases
CMU PIE [14] for the experiments. We use Nearest Neighbor (NN)
classifier for classification as conventionally.

5.1. PIE database

The CMU PIE (Pose, Illumination, and Expression) database con-
tains in total 41368 images of 68 subjects with 500+ images for each.
The face images were captured by 13 synchronized cameras and 21
flashes, under varying pose, illumination, and expression. For each
subject, we manually select 168 images which cover large illumina-
tion variation, pose of roll/yaw/tilt head rotation and moderate vari-

ety in expression, constituting a challenging face database for recog-
nition task. Face images are manually aligned, cropped out from the
selected images and resized to be 20 × 20, with 256 gray levels per
pixel. Figure 2 shows the sample images of two subjects from PIE
database.

We use a subset of PIE containing five near frontal poses (C05,
C07, C09, C27, C29) and all the images under different illumina-
tions and expressions. In total, there are 170 images for each sub-
ject. To further reduce the size of the database, we randomly choose
1/5 samples for each individual and obtain a subset with 34 images
per individual. We finally have 2312 images in total. A random
database partition is done with 5, 10, 15, and 20 images per subject
for training, and the rest of the database for testing. Different sub-
space learning algorithms, PCA, LDA, LPP and LSDA, are applied
to extract features for NN classification. For comparison, we also
implement our algorithm based on patches without the coordinate
information.

Table 1 shows the recognition results which are the average of 10
runs. From the results, we can have a set of interesting observations:

1. Our algorithm based on X-Y patches outperforms all the sub-
space learning algorithms in all the four experiment configu-
rations, and achieves the lowest error rates of 31.13%, 16.11%,
11.3%, and 9.24% respectively.

2. Coordinate information is important for final classification,
and X-Y patches based algorithm performs much better than
the version without coordinate information.

3. Patch-based algorithm has the potential to outperform holistic
subspace learning algorithm. Even without coordinate infor-
mation, our algorithm still performs better than the other four
subspace learning algorithms.

In order to test the performance of proposed method under par-
tial occlusion, we randomly block some portion of the facial images
from 0% to 60% of the total image area. The performance of pro-
posed methods are reported in Table 2. Clearly, the results show that
our proposed algorithm is robust against partial occlusion. Even un-
der 60% occlusion, our proposed algorithm is still able to achieve
comparable performance as the best subspace algorithm without oc-
clusion.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we proposed a new algorithm for face recognition. The
major contributions are two-fold: a joint local appearance and shape
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Fig. 2. Sample images of CMU PIE database.

Occlusion 0% 20% 40% 60%

20-Train 9.24 10.29 12.5 15.75
15-Train 11.3 13.23 17.95 20.66
10-Train 16.11 19.42 23.65 27.87
5-Train 31.13 34.18 39.04 41.37

Table 2. Face recognition performance under different percentage
of occlusion for our X-Y patches based algorithm.

representation, namely X-Y patches, and a general learning and in-
ferring framework based on the universal background modeling. The
proposed X-Y patches based algorithm allows comparison between
patches from different locations, which alleviates the requirement
of exact pixel-wise alignment. The universal background modeling,
on the other hand, provides a natural solution for handling partial
occlusion. Combining these two major advantages, the proposed
methods significantly outperform the state-of-art subspace learning
algorithms.

Currently, we are planning to further verify the proposed al-
gorithm on more databases, such as FERET [13] and FRGC [12].
Moreover, we are planning to conduct more experiments to evaluate
the advantages of algorithm in: 1) robustness to the variation of pose,
illumination, and expression, 2) combining multiple images for clas-
sification, 3) open-set experiment configuration, and 4) robustness to
image misalignment issue.
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