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ABSTRACT
Graphical models of brain functional connectivity have ma-
tured from con rming a priori hypotheses to an exploratory
tool for discovering unknown connectivity. However, explor-
atory methods must control the error rate of “discovered” con-
nectivity networks. Here we explore an error-rate-control meth-
od for graphical models which controls the false-discovery-
rate (FDR) of the conditional-dependence relationships that a
graphical model encodes. The application of this method to
a group analysis of fMRI study on Parkinson’s disease shows
that it effectively controls the errors introduced by random-
ness, and yields meaningful and consistent results. The pro-
posed approach appears promising for functional-connectivity
modeling and deserves further investigation.

Index Terms— graphical model, false discovery rate, brain
connectivity, functional magnetic resonance imaging (fMRI)

1. INTRODUCTION

Graphical models, such as structural equation models (SEM)
[1], dynamic causal models (DCM) [2] and (dynamic) Baye-
sian networks (BN) [3], have attracted increasing attention
in the eld of modeling brain connectivity. These models
generally represent the connectivity between brain regions
as networks, and approximate the random dynamic interac-
tions with certain regular stochastical processes. SEMs were
rst introduced [1], in an application to Positron Emission
Tomography (PET), as a tool to validate a prede ned connec-
tivity network. After being used as a con rmatory tool for a
long time, SEMs were extended to be an exploratory tool to
discover unknown brain connectivity, in applications to func-
tional magnetic resonance imaging (fMRI) [4, 5]. The usage
of DCMs had a similar trend as that of SEMs, shifting from
a con rmatory tool [2] to an exploratory tool in [6]. Another
graphical model, the Bayesian network, was introduced in this
eld rst as an exploratory tool [7, 8]. Recent literature has
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shown that applications of graphical models to brain connec-
tivity have been more and more oriented for the purpose of
unveiling unknown connectivity.
However, current learning algorithms of graphical mod-

els have not been adequately adapted to concerns regarding
the error rate of claimed “discovered” networks. A desirable
model is not only one which ts data well, but also accounts
for the error rate of graphical features of the connectivity
network, for example, the existence of a certain connection
between two brain regions. Structure-learning methods for
graphical models can be divided into three broad categories:
(1) score-based searching methods which look for a suitable
structure according to a certain criterion of goodness-of- t,
such as the Bayes factor [6], the Bayesian information crite-
rion (BIC) [5], or the parsimony goodness-of- t index (PGFI)
[4]; (2) the Bayesian approach, which estimates the posterior
probabilities of a set of candidate network structures and in-
fers the error rate from the posterior probabilities [8]; and (3)
methods based on conditional-independence (CI) tests which
encode a set of tested conditional-independence relationships
as graphs according to certain rules such as Markov proper-
ties [7]. Unfortunately, score-based methods do not allow ex-
plicit inferences on speci c graphical features. The Bayesian
approach is theoretically promising, but exact inferences de-
mand intensive and impracticable computation, especially for
large networks. CI-based methods control the error rate of
each CI test, but the issue of simultaneously testing multiple
CI hypotheses has not been addressed appropriately. There-
fore, in this paper, we improve CI-based methods by control-
ling the error rate of their multiple testing according to the
false discovery rate [9].
Graphical models are theoretically founded on graphical

encoding of CI relationships among random variables [10].
As CI relationships are the backbone of graphical models, it
is natural to construct a graphical model from a set of CI re-
lationships. Several algorithms, named as “discovery algo-
rithms” in [11], are available for this purpose, such as Spirtes,
Glymour, and Scheines’ SGS algorithm. Though these algo-
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rithms construct different types of graphs, their rst steps are
the same: constructing an undirected graph from a set of CI
relationships. The undirected graph will then be annotated
into different types of graphs with different procedures, but
the skeleton of the nal output graph is kept the same as that
of the undirected graph.
In this paper, we propose using a false-discovery-rate pro-

cedure to control the error rate: we rst select a set of condi-
tional-dependence (CD) relationships, with the false positive
rate of the selected CD relationships controlled under a cer-
tain threshold such as 5%, and then input the selected CD rela-
tionships into these CI-based graph-construction algorithms.
Because graphical models are graphical encodings of CI rela-
tionships, and CD and CI are complementary, controlling the
error rate of the CD relationships a graphical mode encodes
will also control the error rate of its structure. As inter-subject
variability is a big concern in studies involving multiple sub-
jects, we also propose a statistical procedure for group anal-
ysis, extracting a connectivity network that consistently ap-
pears in the connectivity networks of the subjects within the
same group. An application of the proposed method to a real
fMRI study on Parkinson’s disease will be discussed.

2. METHODS

2.1. Conditional-Independence Tests

Conditional independence (CI) is the key concept behind graph-
ical models. Two sets of random variables A and B are con-
ditionally independent upon a third set of random variables
S if and only if P (A,B|S) = P (A|S)P (B|S), and the con-
ditional independence is denoted as A⊥B|S. A basic modu-
lar of the CI-based algorithms is to decide whether two ran-
dom variables a and b are conditionally independent or not
upon a third set of random variables S. This is usually im-
plemented by hypothesis testing. For Gaussian continuous
variables, partial correlation and t-test are the most widely
used. To represent dependence in a more general sense, such
as nonlinearity, here we do not assume Gaussian distributions
or linearity, but discretize the originally continuous data into
ordinal categorical data, and apply a variation of the Cochran-
Mantel-Haenszel (CMH) test [12] de ned as follows to test
CI:
Let a, b and s denote three categorical variables, of I , J

and K levels, respectively. a and b are further considered
as ordinal variables, with their levels being assigned with or-
dered scores ui (i = 1, 2, . . . I) and vj (j = 1, 2, . . .J). An
observation of the joint distribution of the three variables is a
I×J ×K contingency table whose element nijk is the count
of event {a = i ∧ b = j ∧ s = k}. Conditional independence
a⊥b|s can be tested with the M2 statistic de ned in Eq. (1),
where ni·k, n

·jk and n
··k denote sums of nijk over the di-

mension(s) indicated by the subscript “·”. M2 asymptotically

follows a χ2

1
distribution if a⊥b|s.
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2.2. Discovery Algorithms

Discovery algorithms, such as the SGS algorithm, learn dif-
ferent types of graphs from CI relationships, but the skeletons
of their nal output graphs share the same rule of encoding
CI relationships, i.e. if a and b are conditionally independent
upon a certain set of variables S excluding a and b, then there
is no edge between the vertices representing a and b. This
rule can be implemented with algorithms of different compu-
tational ef ciency, but all algorithms are to achieve the same
goal: the encoding rule. To avoid distracting readers from the
topic of error-rate control, we just present the most straight
forward method that the SGS algorithm employs [11]: rst,
form an completely connected undirected graph Gf for the
variable set V ; second, for each pair of variables a and b, re-
move the edge between the vertices representing them if and
only if there is a set of variables S ⊆ V \ {a, b} such that
a⊥b|S.
Testing a⊥b|S with the CMH test will become inaccurate

if the contingency table is sparse. Unfortunately this easily
occurs in practice because the size of the contingency table
increases exponentially as the number of the variables in S in-
creases. One solution is to replace the CMH test with exact CI
tests [12], however the intensive computation that exact tests
demand restricts them from large scale applications. Thus, in
practice we just test those CI relationships a⊥b|S where the
size of S is equal to or smaller than a certain thresholdm, and
simply assume conditional dependence if |S| is larger thanm.
The algorithm we used is outlined as follows:

1. enumerate all the variable triples {a, b, S | S ⊆ V \
{a, b} and |S| ≤ m }.

2. test the conditional independence of all the triples enu-
merated in step-1 with the CMH test.

3. select a set of triples and regard them as conditional
dependence with a FDR procedure (see Section 2.3)
which controls the error rate of the selection lower than
a certain threshold such as 5%.

4. remove the edge between the vertices representing a
and b if there is a S ⊆ V \ {a, b} such that a⊥b|S.
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2.3. False Discovery Rate

When many hypotheses are tested simultaneously, the effect
of multiple testing should be corrected accordingly. For ex-
ample, if a researcher wants to control the probability that
at least one of H independent hypotheses is falsely rejected
to be less than 5%, (s)he should set the signi cance level of
each individual test at 1− (1− 5%)H but not at 5%. If (s)he
sets the threshold at 5%, then the expected number of falsely
rejected hypotheses will be H5%, even when none of the hy-
potheses actually is wrong. The false discovery rate (FDR)
is an error-rate criterion of multiple testing, de ned as the
expected ratio of falsely rejected hypotheses to all those re-
jected. Referring to Table 1, the FDR is formally de ned as
FDR = P ( TP + FP > 0)E( FP / TP + FP | TP + FP > 0).
The FDR can be controlled to be lower than q by following
the step-down procedure [9]. The minimum FDR threshold at
which a hypothesis is rejected is called the test’s q-value.

1. Sort the p-values of H hypothesis tests in ascendant
order as p1 ≤ . . . ≤ pH .

2. Find the largest k such that pk ≤
k
H

q.
3. Reject hypotheses 1 . . .k.

test \ truth positive negative
positive TP (true positive) FP (false positive)
negative FN (false negative) TN (true negative)

Table 1. The counts of multiple testing’s results, categorized
according to the test results and the truth.

2.4. Group Analysis

FMRI studies are usually performed to infer features shared
by a group of subjects rather than subject-speci c features.
Whereas, we plan to learn a connectivity network for each
subject individually to accommodate the differences among
subjects, rather than one network for all subjects together. To
extract the connectivity network that is consistently shared
by group members, we propose the following group-analysis
method.
Consistent sharing can be de ned in at least two ways: ab-

solute consistence and relative consistence. Suppose we have
N undirected graphs {Gn}. If the appearance frequency of a
certain connection among the N graphs is statistically signif-
icantly higher than a certain threshold, such as 80%, the con-
nection is considered to be absolutely consistently recruited
by the graphs. If the appearance frequency is statistically sig-
ni cantly higher than a result of randomness, the connection
is considered to be relatively consistently recruited. Absolute
consistence does not necessarily imply relative consistence,
and vice versa. In most fMRI studies, the limited number of
available subjects usually restricts the power of the inferences
based on absolute consistence, so here we develop a group-
analysis method based on relative consistence.

Suppose the N graphs contains Cn (n = 1, . . . , N) con-
nections respectively and the total number of possible con-
nections of a graph is C. If all the connections are randomly
recruited with equal chance, then the number of a connec-
tion’s appearances is a random number Y =

∑N

n=1
Xn where

Xn ∼ Bernoulli(Cn/C). The probability that a connection
appears equal to or more than y times as a result of random-
ness is P (Y ≥ y). We applied the test on relative consistence
to all the possible connections, and then adjusted the effect
of multiple testing with the FDR procedure, and nally se-
lected those whose q-values are lower than 5% as relatively
consistent connections to compose a connectivity network at
the group level.

3. APPLICATION TO PARKINSON’S DISEASE

Data Collection: The study was approved by the University
of British Columbia ethics board and all subjects gave writ-
ten informed consent prior to participating. Ten subjects with
clinically diagnosed Parkinson’s disease participated in the
study. While in the fMRI scanner, subjects were instructed to
squeeze a rubber bulb with their right hand at four frequencies
(0.00Hz, 0.25Hz, 0.5Hz and 0.75Hz) in 30s blocks, arranged
a pseudo-random order. The patients performance the exper-
iment twice, once before medication and the other after med-
ication. fMRI data of their brain activities during performing
the task was collected with a Philips Achieva 3.0 T scanner.
The following eighteen brain regions were selected as the re-
gions of interest (ROI) in the study – the left and right: pri-
mary motor cortex (M1), supplementary motor cortex (SMA),
lateral cerebellar hemisphere (CER), putamen (PUT), cau-
date (CAU), thalamus (THA), prefrontal cortex (PFC), ante-
rior cingulate cortex (ACC), and globus pallidus (GLP).
Preprocessing: The raw fMRI time courses of the voxels
within each ROI were averaged as the summary activity of
the ROI. Then, the averaged time courses were detrended
and normalized to unit variance. Finally, the continuous time
courses were discretized into three ordinal categories of -1, 0
and 1 with thresholds at the lower and upper quartiles.
Results: The connectivity networks of the patients before
and after medication are shown in Figure 1. The two g-
ures are obviously not results of randomness, because most
of the connections with their q-values less than 5% appear in
both of the graphs. For example, the connections between the
left and the right counterparts of ACC, CAU, CER, M1, PFC,
SMA and THA, between L M1 and L SMA, between R M1
and R SMA, and between L SMA and R CER. Since the net-
works were learned from the data of the same group of pa-
tients, it was reasonable for the two networks to share certain
similarity. This also suggests that controlling the error rate
yields robust results, curbing the effect of randomness. The
connections L CER—R M1 and L GLP—L SMA appear in
Figure 1(a) with the q-values less than 10% but not in Figure
1(b) as their q-values are 1 in the analysis after medication.
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Fig. 1. The connectivity networks of the Parkinson’s disease patients, learned withm = 4. Edge labels are the q-values of the
edges in the group analysis. Pre xes “L” and “R” before ROI names are short for “left” and “right” respectively.

The results con rm the compensatory recruitment of the con-
tralteral motor circuit (right M1, left cerebellar hemisphere)
in performing this right handed task in Parkinson’s subjects
off of medication. Additionally, they also demonstrate the
effects of L-dopa medication: reduction in the contralateral
motor circuit and re-emergence of the normal left M1, right
cerebellar circuit.

4. CONCLUSIONS AND DISCUSSIONS

Graphical models have been increasingly investigated as an
exploratory tool for discovering brain connectivity by using
brain-imaging data. It is critical to control the error rate in
the “discovered” connectivity network in real biomedical ap-
plications. Statistically rigorous methods are possible to be
developed for this purpose. The method we developed based
on conditional-independence (CI) tests and the false discov-
ery rate (FDR) showed promising performance in a study on
Parkinson’s disease, where the learned connectivity networks
were consistent with known biological knowledge about the
effects of L-dopa medication in Parkinson’s disease.
However, the proposed method does not control the er-

ror rate directly at the level of graphical features, such as the
existence of certain edges, but indirectly at the level of CI
relationships. Further improvement is achievable because ac-
cording to the theory of graphical models the existence of a
certain edge is a result of the rejection of a set of CI relation-
ships, which is also a problem of multiple testing.
Finally, we note that the modular feature of this method

provides the ability to easily integrate different data sources.
CI relationships can be tested on data collected in different
laboratories. All the p-values of these hypothesis tests can
then be pooled together to learn a connectivity network.
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