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Fig. 1. Densely recording a scene with a video sequence allows us to acquire more visual information about it.

ABSTRACT
We investigate the task of efficiently modeling a scene to build

a robust place recognition system. We propose an approach

which involves densely capturing a place with video record-

ings to greedily cover as many viewpoints of the place as pos-

sible. Our contribution is a framework to (1) effectively ex-

ploit the temporal continuity intrinsic in the video sequences

to reduce the amount of data to process without losing the

unique visual information which describes a place, and (2)

train discriminative classifiers with the reduced data for place

recognition. We show that our method is more efficient and

effective than straightforwardly applying scene or object cat-

egory recognition methods on the video frames.

Index Terms— Pattern recognition, machine vision, im-

age recognition, image sequence analysis.

1. INTRODUCTION

Our objective is place recognition i.e. given an input image

we wish to determine the identity of the place(s) contained

in the image. By “places” we mean specific scenes, land-

marks or buildings. Place recognition is instrumental in Mo-

bile Augmented Reality (MAR) systems [1], where propo-

nents envision an application that allows users to point their

camera phone at a place to access more information about it.

Unfortunately the lack of processing power and memory

on mobile platforms prohibits the use of 3D models (which

are also expensive to construct). Without accurate 3D models

for matching, an image-based system can recognize a place

in an image only if that place was observed previously under

roughly the same conditions (e.g. viewpoint, lighting). Con-

sequently data collection becomes complicated: From which

(and how many) viewpoints should a place be captured for

the purpose of training a sufficiently robust place recognition

system? This difficulty is particularly acute for large build-

ings and landmarks.

To alleviate the problem we propose to densely scan a

place with video recordings. Instead of snapping a single im-

age, the collector pans slowly to capture the place in video.

With the same number of viewing positions, a set of video

recordings can acquire much more information about a place

than a set of still images. Fig. 1 illustrates the idea.

However, the deluge of visual information from video

sequences presents the significant challenge of effectively pro-

cessing them. Straightforwardly breaking up the video se-

quences into image frames and applying techniques from the

scene or object recognition domain, which traditionally dealt

with individual still images, will not be efficient. We propose

a solution, described by the following steps, to process the

video sequences to construct a place recognition system:

1. A method to filter and condense the visual information

in the video sequences into a more compact form (§2). This

is achieved by exploiting the temporal continuity intrinsic

in the video sequences captured in the manner of Fig. 1.

2. Modifying an existing object recognition algorithm [2]

to receive as inputs the result from Step 1 (§3). This avoids

overwhelming the algorithm with the vast amount of visual

information from the input video sequences (§3.2).

In our system, queries are received in the form of still images.

Video processing is required only in the training phase.

1.1. Related work

Significant progress has been made in the area of scene or ob-
ject category recognition (e.g. [2, 3, 4]). Though we empha-

size that place recognition is slightly different since we aim to

recognize specific places (e.g. St. Paul’s Cathedral, Big Ben)

rather than scene categories (e.g. church, tower), ideas from

scene or object category recognition can certainly be applied.

Broadly speaking, most of the current methods involve build-

ing representations or classifiers for images from features ex-

tracted from local keypoints. We modify the method of [2]

and apply it to our video processing framework.
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One previous research towards densely capturing scenes

for place recognition is [5], where “route panoramas” are ob-

tained by line scanning a scene with a camera mounted on a

vehicle as it traverses a street in a city. Given a query image,

the camera position is recovered (hence, the place is recog-

nized) by finding it’s epipole in the route panorama. This can

be costly since a RANSAC-like procedure is required for each

query [5]. In contrast our method requires only matching be-

tween a small number of local features (see §3 and §4).

In [6] video sequences are used as inputs for querying
in place recognition, where video motion coders from mobile

phones are exploited to aid in tracking local features across

the video frames. The aim is to quickly identify seen-before

and newly emerged keypoints so as to speed-up feature ex-

traction in the querying phase. Our method also involves

tracking keypoints, but our focus is on the training phase, i.e.

to train a place recognition system using video sequences as

samples, and hence is complementary to the work in [6].

2. PROCESSING VIDEOS OF PLACES

Given a video sequence of a place, based on the SIFT [7]

framework we detect scale invariant keypoints in every frame

and assign descriptors to them. Collectively, a massive num-

ber of keypoints are obtained, and we aim to reduce the num-

ber of keypoints to consider for subsequent processes. Since

our videos are recorded in a slow panning motion, many of

the keypoints in a frame will be re-occurances from the pre-

vious frames (but in slightly differing views). We can track

keypoints across the video sequence to identify the overlaps.

2.1. Finding keypoint overlaps across video frames

Let {(xi,pi)} and {(yj ,qj)}, 1 ≤ i ≤ m and 1 ≤ j ≤ n, be

the sets of keypoints detected in two successive frames, with

xi and yj denoting the keypoint positions and pi and qj their

descriptors. Since the images represent two views of the same

scene, a homography H exists between corresponding points:

Hỹ × x̃ = 0 , (1)

where ỹ and x̃ indicate that the homogenous coordinates of y
and x are used. Our aim is to find the best homography H∗.

To achieve this, we first compute a pairwise similarity

matrix using the Euclidean distance between pi and qj . All

possible corresponding keypoints between the two frames are

identified by considering that a pair of keypoints are match-

ing if the distance of their SIFT descriptors are below a pre-

defined threshold. H∗ is determined as the H that allows the

most number of corresponding keypoints to overlap (i.e. the

distance between x̃ and Hỹ is below a certain threshold). We

perform a RANSAC procedure to estimate H∗ (refer to [8]).

The process is repeated successively on each frame pair,

and overlapping keypoints are accumulated into the same track
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Fig. 2. Finding keypoint overlaps using temporal continuity.

Fig. 3. Overlapping keypoints are re-occurances of the same

local feature. In this pair, crosses are detected keypoints, and

those with bounding circles indicate that an overlap is found.

(keypoints without matches are simply discarded). Fig. 2 il-

lustrates the idea, and Fig. 3 shows an example result. As

an indication of the effectiveness of the approach, a typical

25-frame video sequence in our database produces a total of

about 30,000 SIFT keypoints. Among these only about 4,000

are determined as unique by the method. Additionally this

can also be considered a filtering process, where only key-

points consistently detectable in multiple views are kept.

Our idea is similar in spirit with [9]. However they track

each keypoint individually since there could be multiple mov-

ing objects of interest in their videos. Our idea is more suited

here, since we wish to separate the static background (the

place of interest) from dynamic occlusions (the keypoints of

which are discarded for not obeying the global homography).

2.2. Estimating descriptor distributions incrementally

We derive a parsimonious representation for the descriptors

in a particular track by representing them with a Gaussian

distribution. A distribution is more expressive than a simple

average, as was done in [9]. We use a diagonal instead of a

full covariance since a compact representation is desired. The

distributions are updated incrementally so that a large number

of descriptors do not have to be maintained. For a particular

track, at time t let μt and Σt be the mean and covariance of
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its descriptor distribution of m keypoints. At time t + 1, if a

new descriptor pt+1 is added, μt and Σt are updated as

μt+1 = m
m+1μt + 1

m+1pt+1, (2)

Σt+1 = m
m+1Σt + m

(m+1)2
(μt − pt+1)(μt − pt+1)T .(3)

The off-diagonal elements of Σt+1 are then zeroed. The first

two descriptors of the track are used to initialize the mean

and covariance matrix. For d-dimensional descriptors, at any

point in time only 2d unique values, corresponding to the

nonzero elements of μ and Σ, are kept for each track (as op-

posed to d(d + 3)/2 for the full covariance case).

3. PLACE RECOGNITION VIA BOOSTING

Given a set of video recordings of different places, we apply

the previous steps to obtain a set of descriptor distributions.

The next step is to train classifiers (which takes still images
as inputs) for place recognition, as the following elaborates.

3.1. Boosting descriptor distributions

We apply and modify the AdaBoost method introduced in [2]

for our goal. AdaBoost aims to train classifiers of the form

Hc(I) =
∑T

t=1α
c
t hc

t(I) , (4)

where Hc(I) gives the confidence of input image I contain-

ing the c-th place. Hc(I) is obtained by boosting a series of

weak classifiers hc
t(I), 1 ≤ t ≤ T , each having weight αc

t , to

become a strong classifier. A weak classifier is defined as

hc
t(I) =

{
1 if min d(vc

t ,vg) ≤ θc
t , ∀ 1 ≤ g ≤ G

0 otherwise
, (5)

where vc
t is the defining feature of hc

t and vg is one of the G
local features of I. Function d(·, ·) is a dissimilarity measure
used to compare vc

t and vg with threshold θc
t , and the exact

form of d(·, ·) is dependent on the forms of vc
t and vg . Given

a pre-determined T by the user, the AdaBoost algorithm finds

the optimal vc
t , θc

t and αc
t successively for 1 ≤ t ≤ T . The

vc
t ’s are the discriminative features of a set of places.

Before invoking AdaBoost to obtain the hc
t ’s, a minimum

dissimilarity matrix K must be computed. Let em be the m-

th descriptor distribution accumulated from video sequences

of the c-th place. We compute for Kmn the Kullback-Leibler

Divergence (KLD) of em and fn i.e. DKL(fn, em), where fn
is the nearest neighbour of em in the n-th video sequence:

fn = arg min
fi

DKL(fi, em) , fi ∈ Fn . (6)

Fn is the set of descriptor distributions from the n-th video

sequence. For Gaussians, the KLD has the closed form

DKL(fi,em)= 1
2

(
log

|Σm|
|Σi| +tr(Σ−1

m Σi)+(μm−μi)
T Σ−1

m (μm−μi)−d
)
,

(7)

where (μm,Σm) and (μi,Σi) respectively characterize the

distribution of em and fi. Given a completed K, we can apply

the AdaBoost algorithm [2] to choose among the em’s to form

the set of T discriminative descriptor distributions vc
t .

In our application, place recognition is performed on still

images. We use the Mahalanobis distance for d(·, ·) in Eq. (5):

d(vc
t ,vg) = (μc

t − vg)T (Σc
t)

−1(μc
t − vg) , (8)

where (μc
t ,Σ

c
t) define the distribution of vc

t and vg is one of

the G keypoint descriptors (vectors) in the query image. The

AdaBoost algorithm is modified accordingly to retain only the

third term of Eq. (7) to compute the threshold θc
t .

How we compute K and define the weak classifiers con-

stitute the major differences between our work and the origi-

nal idea in [2], where em and fn are simply descriptors (vec-

tors) with Kmn = ‖em − fn‖, and d(vc
t ,vg) = ‖vc

t − vg‖.

3.2. The benefits of exploiting temporal continuity

The benefits of video processing, as opposed to individual

treatment of each frames, is obvious by observing matrix K.

Let the size of K be M×N . M is the total number of features

from the video sequences of the positive class. By straightfor-

wardly applying [2], i.e. by considering each keypoint from

each frame of the positive class individually (there is more

than one video sequence per class), M would be a massive

number: For our database (see §4), M can reach 100,000! In

constrast, by identifying keypoint overlaps (as in §2), M can

be reduced to a much more manageable value of 12,000.

Of equal importance is the value of N , which is the to-

tal number of “samples” of places in the database. Using our

framework, each video sequence is a sample (hence N < 200
for our database), whereas by directly applying [2], every

frame in the video sequences is a sample, and N can reach up

to 5000. Since the size of K directly impacts the efficiency of

the AdaBoost algorithm (refer to [2]), by exploiting temporal

continuity as described in §2, the AdaBoost procedure can be

performed efficiently on a database of video sequences.

4. EXPERIMENTAL RESULTS

First, we describe our video collection procedure. Places of

interest (mainly large buildings) in our campus were captured

in video in the manner described in §1. The length of the

videos range from 1s to 10s depending on the size of the

place. Three video sequences are recorded at 30 fps from

each place. Fig. 4 illustrates the types of places we have

collected. We recorded 44 different places which amount to

about 21,000 frames or 1.5GB of data. At each place, a sepa-

rate query set of still images (collectively 1349 images) were

also captured in an unconstrained manner on different days.

Several experimental settings were investigated to exam-

ine the performance of the proposed method:
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Fig. 4. Samples of several places in our database.

1. Directly apply [2] on the video sequences by treating

each video frame individually as single images.

2. Randomly sample a few frames from each video and di-

rectly apply [2]. This is to simulate the imaging of a place

from only a few pre-selected viewpoints.

3. Apply the procedure in §2 but represent each track with

just the simple average of their descriptors, as in [9]. Train

classifiers using [2] with the descriptor averages.

4. Process the video sequences according to §2 and train

classifiers with the method detailed in §3.

In all settings the value of T in Eq. (4) is set to 100. We im-

plemented these settings on a randomly chosen subset of our

database with 10 places. A small subset is used first since

Setting 1, as explained in §3.2, can require massive amounts

of memory and time to perform. Even on this subset, Set-

ting 1 required a few days of training whereas Setting 4 re-

quired only a few hours— a clear evidence of the improved

efficiency. We test the resulting classifiers on the query set.

Fig. 5 illustrates the results in terms of Receiver Operating

Characteristic (ROC) curves. The ROC curves were obtained

by varying the threshold of the overall classifier defined in

Eq. (4). Expectedly Setting 1 performed better than Setting

2, confirming that having observed a place from more view-

points, we can produce more robust classifiers. Secondly, Set-

ting 4 marginally outperformed Setting 3, indicating that it is

beneficial to use descriptor distributions as oppposed to sim-

ple averages [9] to train classifiers. Additionally, since Setting

4 outperformed Setting 1, it can be concluded that, besides the

gain in efficiency in training, the prior filtering for more con-

sistently detectable keypoints given by our method in §2 can

produce a more robust and accurate place recognition system.

Finally, we repeat Setting 4 on the whole dataset to ex-

amine the scaling capability of the proposed method. The

resulting classifiers produced an Equal Error Rate (EER) of

about 8% (refer to the corresponding ROC curve in Fig. 5)

which is reasonably accurate considering that query images

taken in an unconstrained manner must be classified into 44

classes. We are also encouraged by the fact that in real MAR

systems, by exploiting GPS priming only a small number of

places (< 10) need to be recognized within a locality [1].

5. CONCLUSIONS

We proposed a method to condense the local features of video

recordings of places into a more compact form. The objective

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

90

False accept rate, %

Tr
ue

 a
cc

ep
t r

at
e,

 %

Setting 1: Directly apply [2] on video frames.
Setting 2: Directly apply [2] on randomly selected video frames.
Setting 3: Exploit temporal continuity, use descriptor average.
Setting 4: Exploit temporal continuity, use descriptor distribution.
Setting 4: On full dataset of 44 places.

Setting 3Setting 2

Setting 4: Full dataset

Setting 1

Setting 4

Fig. 5. Results of place recognition experiment (ROC curves).

is to reduce the amount of data to process when training clas-

sifiers for a place recognition system. We also modified ex-

tensively an existing object recognition algorithm [2] for our

purpose. Experimental results show that, apart from allowing

training of classifiers to be more feasible, our method pro-

duced a more accurate and robust place recognition system

compared to applying [2] directly on video sequences.
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