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ABSTRACT
In this paper, we consider the sequential portfolio investment
problem considered by Cover [3] and extend the results of
[3] to the class of piecewise constant rebalanced portfolios
that are tuned to the underlying sequence of price relatives.
Here, the piecewise constant models are used to partition
the space of past price relative vectors where we assign a
different constant rebalanced portfolio to each region inde-
pendently. We then extend these results where we compete
against a doubly exponential number of piecewise constant
portfolios that are represented by a context tree. We use the
context tree to achieve the wealth of a portfolio selection
algorithm that can choose both its partitioning of the space of
the past price relatives and its constant rebalanced portfolio
within each region of the partition, based on observing the
entire sequence of price relatives in advance, uniformly, for
every bounded deterministic sequence of price relative vec-
tors. This performance is achieved with a portfolio algorithm
whose complexity is only linear in the depth of the context
tree per investment period. We demonstrate that the resulting
portfolio algorithm achieves signi cant gains on historical
stock pairs over the algorithm of [3] and the best constant
rebalanced portfolio.

Index Terms— universal, portfolio, investment, context
tree, piecewise models.

I. INTRODUCTION

In sequential portfolio selection [1] [2] [3], the objective
is to select sequential portfolios for a market with a nite
number of stocks to maximize wealth with respect to a can-
didate class of investment strategies. The market is modeled
by a sequence of price relative vectors x

n = x[1], . . . ,x[n],
x[t] ∈ R

m
+ . The jth entry xj [t] of a price relative vector

x[t] represents the ratio of closing to opening price of the
jth stock for the tth trading day. An investment at day
t is represented by the portfolio vector b[t], b[t] ∈ R

m
+

and
∑m

j=1 bj[t] = 1 for all t. Each entry bj [t] corresponds
to the portion of the wealth invested in stock j at day t.
The achieved wealth after n investment periods is given by∏n

t=1 b
T [t]x[t].

In [3], Cover presented an algorithm that asymptotically
achieves the wealth of the best constant rebalanced portfolio
from the class of all constant rebalanced portfolios for any
sequence of price relative vectors, i.e., an algorithm that
achieves maxb

∏n

t=1 b
T
x[t], where the maximizing b

∗ can
only be chosen in hindsight. Here, the competition class
is the class of all constant rebalanced portfolios. We rst
extend Cover’s algorithm and construct sequential portfolios
that compete against the best piecewise constant rebalanced
portfolios. In our framework, the space of past price relatives
is partitioned into a union of disjoint regions over each
of which, a constant rebalanced portfolio is tted indepen-
dently. As an example, suppose at trading period t, we divide
the space of past price relatives, x[t− 1] ∈ R

m
+ as in Figure

1 into J disjoint regions Rj where
⋃J

j=1 Rj = R
m
+ (e.g.,

J = 4 for Figure 1). Here, if x[t − 1] ∈ R1, then stock 1
performed better than stock 2 at trading day t− 1 (however,
both stocks lost money, i.e., x1[t− 1] < 1, x2[t− 1] < 1). If
x[t − 1] ∈ R1

⋃
R2 where the gain of stock 1 was greater

than the gain of stock 2 at trading day t− 1, then investing
in stock 1 more than stock 2 in the next trading period t
may be a good idea. This strategy may work if there are
no drastic shifts in stock trends. Hence, we assign each
region a different portfolio and invest at each trading day
depending on the relative performance of each stock on the
previous day. For piecewise constant rebalanced portfolios,
the portfolio used is bj such that if x[t − 1] ∈ Rj then we
invest with bj at trading period t.

We rst present results for the piecewise constant re-
balanced portfolios when the regions Rj are xed and
known. Given such a partition

⋃J

j=1 Rj = R
m
+ and the past

values of price relative vectors x[t], t = 1, . . . , n − 1, we
de ne a competing algorithm from the class of all piecewise
constant rebalanced portfolios as b̂[n] = bs[n−1], where
s[n − 1] = j when x[n − 1] ∈ Rj is an indicator variable
and j ∈ {1, . . . , J}. For each region, the constant rebalanced
portfolio vector bj can be selected independently. Here we
try to achieve supbj∈B

∏n

t=1 b
T
s[t−1]x[t], j ∈ {1, . . . , J},

where B = {b :
∑m

i=1 bi = 1, bi ∈ [0, 1]} is the simplex,
i.e., we try to achieve the performance of the best piece-
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wise constant rebalanced portfolios tuned to the underlying
sequence of price relatives x

n. We rst demonstrate an
algorithm b̂[t] whose achieved wealth, over that of the best
piecewise constant rebalanced portfolios is upper bounded
by O(J(m−1)

2 ln(n/J)). Our algorithm pays a “parameter
regret” of O(m−1

2 ln(n/J)) per region to effectively learn
(or compete against) the best parameters for that region.
However, in this basic form, this problem was solved in

[3], [4]. Since the partitions are xed, we already know
the side-information generating mechanism, i.e., s[t − 1].
Independently applying Cover’s algorithm for each region
will yield the required sequential portfolio with the corre-
sponding result. However, we extend these results to the
case when the boundaries of each region are also selected by
the class, i.e., the side-information generating mechanism is
also a design parameter. Hence, we compete against the best
side information generating mechanism from the class of all
such sequences represented by a context tree. Here, we try
to achieve the performance of the best sequential piecewise
constant rebalanced portfolio when the partitioning of the
past price relatives is taken from a doubly exponentially
large class of possible partitions. These partitions will be
compactly represented using a “context tree” [5]. Here, we
have neither a priori knowledge of the selected partition
nor the best model parameters, i.e., constant rebalanced
portfolios given that partition.
We demonstrate an algorithm that asymptotically achieves

the performance of the best sequential portfolio (correspond-
ing to a particular partition) from the doubly exponentially
large class of such partitioned portfolios. To this end, we
de ne a depth-K context tree for a partition with up to 2K

regions, as shown in Figure 2, where, for this tree, K = 2.
For a depth-K context tree, the 2K nest partition bins
correspond to leaves of the tree. On this tree, each of the bins
are assigned to regions: {1 ≥ x2 > x1 ≥ 0}, {x2 > x1 ≥
1}, {1 ≥ x1 > x2 ≥ 0} and {x1 > x2 ≥ 1}. Of course,
more general partitioning schemes could be represented by
such a context tree.
For a tree of depth-K , there exist 2K+1 − 1 nodes,

including leaf nodes and internal nodes. Each node η on
this tree represents a portion of positive orthant R

m
+ , Rη .

The region corresponding to each node η, Rη , (if it is not a
leaf) is constructed by the union of regions represented by
the nodes of its children; the upper node Rη

u
and the lower

node Rη
l
, Rη = Rη

u
∪ Rη

l
. By this de nition, any inner

node is the root of a subtree and represents the union of its
corresponding leaves (or bins).
We de ne a “partition” of R

m
+ as a speci c partitioning

Pi = {Ri,1, . . . , Ri,Ji
} with

⋃Ji

j=1 Ri,j = R
m
+ , where each

Ri,j is represented by a node on the tree in Figure 1 and
Ri,j are disjoint. There exist a doubly-exponential number,
NK ≈ (1.5)2

K

such partitions, Pi, i = 1, . . . , NK , embed-
ded within a depth-K full tree. This is equivalent to the
number of “proper binary trees” of depth at most K , and is
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Fig. 1. A partition of the R
m
+ .
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Fig. 2. A full tree of depth 2 that represents all context-tree
partitions of R

m
+ into at most four possible regions.

given by Sloane’s sequence A003095 [6], [7]. For each such
partition, there exists a corresponding sequential algorithm
that achieves the performance of the best piecewise constant
rebalanced portfolio for that partition. We can then construct
an algorithm that will achieve the performance of the best
sequential algorithm from this doubly exponential class.
To achieve the performance of the best sequential

algorithm (i.e., the best partition), we try to achieve
supPi

∏n

t=1 b̂
T

Pi
[t]x[t] where b̂Pi

[t] is the corresponding
sequential piecewise constant rebalanced portfolio for par-
tition Pi. We will then demonstrate a sequential portfolio,
b̂[t], such that the “structural regret” is at most O(2C(Pi))
with respect to the best b̂Pi

[t], where C(Pi) is a constant
which depends only on the partition Pi. This yields, upon
combining the parameter and structural regret, an algorithm
achieving O(Ji(m−1)

2 ln(n/Ji)) + O(2C(Pi)) uniformly for
any x

n.
Hence, the algorithms introduced here are “twice-

universal” in that they asymptotically achieve wealth of the
best portfolio in which the parameters of the piecewise con-
stant rebalanced portfolio and also the partitioning structure
of the model itself can be selected, based on observing the
whole sequence in advance.
We begin our discussion of piecewise constant rebalanced

portfolios with the case when the partition is xed and
known in the initial part of Section II. We then extend these
results using context trees. We present the corresponding
theorems and outline their proofs due to space limitations.
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Full proofs and complete implementations (with correspond-
ing MATLAB code) for the universal portfolio selection
algorithms with complexity linear in O(K) per combination
are given in [8]. We conclude the paper by demonstrating the
substantial gain achieved by our algorithms on benchmark
historical stock pairs.

II. PIECEWISE CONSTANT REBALANCED
PORTFOLIOS

In this section, we rst construct a sequential portfolio
that performs over every sequence of price relatives x

n

as well as the best xed piecewise constant rebalanced
portfolio for that sequence with a partition of the price
relative space given by

⋃J

j=1 Rj = R
m
+ . One such portfolio

from the class against which this algorithm will compete
can be represented by B = [b1, . . . , bJ ] and would achieve
a wealth

∏n

t=1 b
T
s[t−1]x[t]. Since the number and boundaries

of the regions are known, we have J independent constant
rebalanced portfolio selection problems. Applying Cover’s
algorithm in each region yields the following theorem.
Theorem 1: Let x

n = x[1], . . . ,x[n] be an arbitrary
sequence of price relative vectors such that x[t] ∈ R

m
+ for

all t and some components of x[t] can be zero. Then we can
construct sequential portfolios b̃[n] with complexity linear
in nm such that

ln

n∏
t=1

b̃
T
[t]x[t] ≥

ln

n∏
t=1

b
T
s[t−1]x[t]−

J∑
j=1

(m− 1)

2
ln(nj + 1)−O(1)

where nj is the number of elements of region j and s[t−1] is
the state indicator variable, i.e., s[t−1] = j when x[t−1] ∈
Rj .
The proof of Theorem 1 directly follows application of

[3] into J separate regions. We next consider the portfolio
selection problem where the class against which the algo-
rithm must compete includes not only the best constant
rebalanced portfolios for a given partition, but also the best
partition of the space of past price relatives as well. As such,
we are interested in the following wealth

∏n

t=1 b̂
T

Pi
[t]x[t],

where Pi is a partition of the R
m
+ with the state indicator

variable si[t − 1] = j if x[t − 1] ∈ Ri,j , and Pi =

{Ri,1, . . . , Ri,Ji
} with

⋃Ji

j=1 Ri,j = R
m
+ for a Ji, and b̂Pi

[t]
is the corresponding sequential portfolio for the partition
Pi. The partition Pi can be viewed as in Figure 2 as a
subtree or “context tree” of a depth K full tree with the
Ri,j corresponding to the nodes of the tree. Each Ri,j is
represented by a node on the full tree and Ri,j are disjoint.
Given the full tree, there exist NK such partitions, i.e., Pi,
i = 1, . . . , NK , where NK = N2

K−1 + 1.
Similar to [5], we de ne C(Pi) as the number of bits that

would have been required to represent each partition Pi on
the tree using a universal code: C(Pi) = Ji + nPi

− 1,

where nPi
is the total number of leaves in Pi that have

depth less than K , i.e., leaves of Pi that are inner nodes
of the tree. Since nPi

≤ Ji, C(Pi) ≤ 2Ji − 1. Given
the tree, we can construct a sequential algorithm with linear
complexity (to combine the exponential number of partions)
in the depth of the context tree per price relative vector that
asymptotically achieves both the performance of the best
sequential portfolio and also the performance of the best
constant rebalanced portfolio for any partition as follows.
Theorem 2: Let x

n = x[1], . . . ,x[n] be an arbitrary
sequence of price relative vectors such that x[t] ∈ Rm

+ for
all t and some components of x[t] can be zero. Then we can
construct sequential portfolios b̃u[t] with complexity linear
in nm such that

ln

n∏
t=1

b̃
T

u [t]x[t] ≥ sup
Pi

(
sup

bi,j∈B
ln

n∏
t=1

b
T
i,si[t−1]x[t]

−2C(Pi) ln(2)−
Ji(m− 1)

2
ln(

n

Ji

+ 1)

)
+ O(1),

Pi is any partition on the context tree, C(Pi) is a constant
that is less than or equal to 2Ji − 1, si[t − 1] is the state
indicator variable for partition Pi, i.e., si[t − 1] = j if
x[t− 1] ∈ Rm

i,j .
The complexity O(nm) is due to calculation of Cover’s

portfolios. The actual complexity of the combination algo-
rithm is O(K), i.e., linear in the depth of the context-tree.
As an example, if one replaces Cover’s algorithm with [2],
the complexity of the overall algorithm would be O(K+m),
albeit with different performance bounds. The construction
of the universal portfolio b̃u[t] is given [8]. Note that the
inequality in Theorem 2 holds for any partition of the data,
including that achieving supPi

over the right hand side.
This implies that, without prior knowledge of any complexity
constraint on the algorithm, such as prior knowledge of the
depth of the context tree against which it is competing, the
universal prediction algorithm can compete well with each
and every subpartition (context-tree) within the depth-K full
tree used in its construction.

II-A. Outline of Proof of Theorem 2
Given a partition Pi =

⋃Ji

j=1 Ri,j of the R
m
+ , Pi ∈ P (the

competing class), we consider a family of portfolios, each
with its own set of portfolio vectors Bi = [bi,1, . . . , bi,Ji

].
Here, each bi,j represents a constant portfolio vector for the
jth region of partition Pi, i.e., when x[t − 1] ∈ Ri,j , we
use bi,j . For each pairing of Pi and Bi, we consider the
sequential wealth achieved by the corresponding algorithm
W (xn | Bi,Pi) =

∏n

t=1 b
T
i,si[t−1]x[t], where si[t − 1] is

the state indicator variable for partition Pi, i.e., si[t−1] = j
if x[t − 1] ∈ Ri,j . Applying Cover’s algorithm for each
segment will yield a sequential algorithm b̂Pi

[t] which will
asymptotically achieve supBi

W (xn | Bi,Pi). For each
partition Pi, we de ne a similar sequential predictor, each
achieving the wealth of the best constant rebalanced portfolio
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Fig. 3. Wealth achieved on stock pairs Iroquois-KinArk.

for that partition. We next show that a weighted combination
of all these portfolios achieves a wealth asymptotically as
large as the best sequential algorithm, i.e., b̂Pi

[t] with
the largest wealth. This weighted combination can also be
used to derive the corresponding portfolio that achieves
this weighted wealth. However, this weighted combination
can only be calculated by combining all the sequential
algorithms corresponding to allNK possible partitions which
is naturally infeasible for large K . Nevertheless, we can
demonstrate that, if we assign each node on the context
tree a certain sequential algorithm (which is derived from
Cover’s algorithm that only runs over the sub-sequence of
price relatives belonging to that node), we can construct the
combination with complexity just linear in the depth of the
context-tree. Hence, the nal portfolio can be constructed on
the context-tree with complexity O(K) by combining NK

possible partitions.

III. SIMULATIONS

In this section, we apply our algorithm to historical stock
prices (that are now classical) collected from the New York
Stock Exchange over a 22-year period until 1985. These
stock pairs include Iroquois-Kinark, IBM-Coca Cola and
Meico-Fisch. We use a depth-4 context tree algorithm, with
the partion given in Figure 1. We rst try our algorithms
on the Kinark-Iroquois pair as shown in Figure 3 which are
chosen because of their volatility. In Figure 3, we plot the
wealth achieved by our algorithm (CTW), Cover’s algorithm
(CRP) and the best constant portfolio tuned to the underlying
stock prices (BCRP). We also repeat this experiment for
other stock pairs and present nal wealths in Figure 4. In
each pair, our algorithm achieves signi cant gains over both
algorithms.

Stocks CRP BCRP CTW
Ir&Kn 37.14 72.59 5,503,998

Coke&Ibm 14.10 15.02 19.44
Fi&Me 27.09 35.28 50.66

Fig. 4. Performance on historical stock pairs.

IV. CONCLUSION
In this paper, we consider the problem of investing using

piecewise constant rebalanced portfolios from a competitive
algorithm perspective. Using context trees and methods
based on sequential probability assignment, we have shown
a portfolio selection algorithm whose achieved wealth is
within O(ln(n)) in the exponent of that of the best piecewise
constant rebalanced portfolio that could only have been
selected using all of the data in hindsight. We use a method
similar to context tree weighting to compete well against
a doubly exponential class of possible partitionings of the
space of price relatives. We also demonstrated the signi cant
gains achieved by this algorithm on historical data.
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