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ABSTRACT
Many important early vision techniques, such as Active con-

tours (ACs), can be formulated as energy minimization. How-

ever, finding global optimum (minimum energy) configura-

tions is often computationally intractable. Approximate so-

lutions obtained using iterative numerical methods may be

ill-conditioned, and exhibit poor convergence and inaccuracy

due to noise and discretization errors. We formulate AC as

a statistical estimation problem and solve it using (Gaussian)

Message passing on Factor graphs of linear models. The re-

sulting algorithm exhibits faster convergence and the solu-

tions possess higher numerical stability, robustness and ac-

curacy.

Index Terms— Message passing, Machine Vision, Linear

systems, Optimization, Statistical Estimation.

1. INTRODUCTION

Active contours (ACs) are popular methods for solving a va-

riety of vision problems. ACs are energy-minimizing splines

controlled by internal constraint forces and external (image)

forces that pull it towards features, such as lines and edges.

The energy functions used in ACs are typically non-convex,

and the space of possible configurations is very large. They

have many local minima which may be arbitrarily far from

the optimum. Hence finding optimum solutions to the corre-

sponding optimization problem is computationally intractable.

Another common issue is that local minimization techniques

are naturally sensitive to the initial estimate.

Various techniques exist for energy minimization in ACs.

Dynamic programming on curves, Neural networks and (Euler-

Lagrange) numerical methods [1] are widely used to mini-

mize the discrete energy functional in ACs. Fig. 3(a), 3(b),

3(c) show the use of Dynamic programming for AC. Euler-

Lagrange method achieves this minimization iteratively by

solving an inverse problem and suffers from numerical insta-

bility because numerical differentiation is ill-posed when the

solution does not depend continuously on the data.

Many known algorithms for practical applications in cod-

ing, artificial intelligence, and signal processing may be viewed
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as instances of the Sum(mary)-Propogation Algorithm (SPA)

that operates by Message passing on Factor graphs (FGs) [2],

[3], [4]. Gaussian message passing in FGs of linear mod-

els was considered in [5]. Many unconstrained optimization

techniques can be elegantly combined with SPAs to yield pow-

erful tools for statistical estimation.

We formulate discrete energy minimization in ACs as an

instance of Gaussian Message passing over FGs of linear mod-

els and combine the robustness and computational efficiency

of SPA to achieve faster, accurate and robust convergence in

presence of noise or an ill-conditioned problem. This ap-

proach offers significant gains over the (Euler-Lagrange) nu-

merical methods for ACs (snakes) which are highly sensitive

to noise, false minima and contour initialization.

The rest of the paper is organized as follows: Section 2 is a

primer for the Euler-Lagrange method for ACs and FGs. Sec-

tion 3 serves as the motivation to derive an iterative Message

passing algorithm for ACs and discusses the novel formula-

tion of AC as an instance of SPA involving Gaussian Mes-

sage passing in a FG of linear models. Section 4 discusses

the simulations and the results of implementation of different

algorithms. Section 5 offers some conclusions and discusses

potential application of the technique developed in this paper

to other numerical algorithms.

2. BACKGROUND

Active contours can be formulated as a function v : [0, 1] →
R2 with some boundary conditions. The contour is placed

on an image I : R2 → R, and it moves towards an opti-
mal position and shape by minimizing its own energy. Fitting

active contours to shapes in images may be stated as finding

v̂ = argminv Econtour(v, I). Parametrically the AC can be

represented as v(s) = (x(s),y(s)), and its energy functional

is Econtour(v(s), I) = Eint(v(s)) + Eimage(v(s), I). The

internal energy Eint of the contour depends on the shape of

the contour and the parameter functions α(s) (elasticity) and

β(s) (rigidity). The image energy Eimage is a function of the

contour position on an attractor image p(v(s), I). Examples

of image functionals are the image intensity Eline = I(x, y)
and Eedge = −|∇I(x, y)|2. These energies result in internal

and external (image) forces at all points of the contour. When

all forces are balanced, the total energy is at a minimum.

Using variational calculus and by applying Euler-Lagrange

differential [1] shows that minimizing Econtour gives rise to
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the following force balance equation,

α
∂2v(s)

ds2
− β

∂(4)v(s)
ds(4)︸ ︷︷ ︸

Internal−Contour−force

= −γ∇Eext︸ ︷︷ ︸
External−Image−force

where γ is a constant (step size) introduced to control the

external force. The discrete formulation of the contour is a

piecewise linear curve obtained by joining a set of control

points v = v0, v1, . . . , vn−1, vn) where vi = (xi, yi) and

vn = v0 (closed contour). The discrete energy terms are:

Econtour(v, I) =
n∑

i=1

Eint(vi) +
n∑

i=1

Eimg(vi, I)

Eint(vi) =
αi|vi − vi−1|2

2h2︸ ︷︷ ︸
Elasticity

+
βi|vi−1 − 2vi + vi+1|2

2h4︸ ︷︷ ︸
Stiffness

Eimg(vi, I) = − (|Gx(xi, yi)|2 + |Gy(xi, yi)|2
)

where Gx = ∂Gσ

∂x ⊗ I, Gy = ∂Gσ

∂y ⊗ I, Gσ is the convolution

Gaussian of standard deviation σ and ⊗ is the convolution

operator. Let fx(i) = ∂Eimg/∂xi and fy(i) = ∂Eimg/∂yi

where the derivatives are approximated by finite differences

when they cannot be computed analytically. Each control

point is allowed to move freely under the influence of the

forces. The discrete force balance (constraint) equation Cvi

at each point vi is,

αi(vi − vi−1) − αi+1(vi+1 − vi)
+ βi−1(vi−2 − 2vi−1 + vi)
− 2βi(vi−1 − 2vi + vi+1)
− βi+1(vi − 2vi+1 + vi+2) + (fx(i), fy(i)) = 0

which can be written as Aiνi + f(vi) = 0, where Ai is a

coefficient row vector and νi = [vi−2, vi−1, vi, vi+1, vi+2]T .

Then the discrete force balance equation for the contour is

Av+f(v) = 0, where A is a pentadiagnol banded coefficient

matrix. The solution to this equation is given by an implicit

Euler step involving time derivatives,

Avt + f(vt) = −γ(vt − vt−1) (1)

At equilibrium, the time derivative vanishes and we end up

with a solution of the force balance equation. Equation 1

can be solved by matrix inversion vt = (A + γI)−1(vt−1 −
fvt−1(xt−1,yt−1)). The matrix (A + γI) is a pentadiagonal

banded sparse matrix, so its inverse can be calculated by LU

decompositions in O(n) time and hence provides a rapid so-

lution to (1).

Factor graphs represent the factorization of a global func-

tion into a product of local factors, f(X) =
∏m

j=1 fj(Sj(X))
where, Sj(X) ⊂ X = {x1, . . . , xn}. While graphically rep-

resenting factor graphs, we use circles for function nodes fj

and squares for variable nodes xi. There is an edge that con-

nects each function node to each of the variable nodes in its

arguments. The global function f is computed by applying

SPA which states that, the message sent from a node v on an

edge e is the product of the local function at v (or the unit

function if v is a variable node) with all messages received

at v on edges other than e, summarized for the variable as-

sociated with e. Let μx→f (x) be the message passed from

variable node x to function node f , and similarly μf→x(x).
We have,

μx→f (x) =
∏

h∈N (x)\{f}
μh→x(x)

μf→x(x) =
∑
X\x

(
f(XN (f))

∏
y∈N (f)\{x}

μy→f (y)
)

where N (.) is the neighborhood function. The reader should

refer to prefatorial papers on snakes [1] and Factor graphs [2]

for complete descriptions and derivations.

3. MESSAGE PASSING FORMULATION

The following iterative Euler approximation is frequently used

vt � 1
γ {vt−1 − (Avt−1 + f(vt−1))}, where v0 is the set

of initially suggested control points. This can be also writ-

ten as γvt = vt−1 + Δt where at any time (iteration) t, let

Δt = Δ(vt−1) = Avt−1 + f(vt−1) be an update func-

tion. Δt = (Δt
1, . . . ,Δ

t
n) can be viewed as series of local

updates at the control points i.e. vt
i = vt−1

i + Δt
i , where,

Δt
i =

∑2
j=−2 Ai

i+jv
t−1
i+j + f(vt−1

i ).
Note that Cv = Cv(N (v), f(I)). An update rule that ex-

ploits the locality of the problem structure may be obtained by

considering that only vi needs to be updated in order to satisfy

the force balance constraints Ci = {Cv,∀v ∈ N (vi)} at each

time t. Assume Δt
i,v is the update value for vi obtained using

the constraint Cv . This can be easily computed by substitut-

ing vt
i = vt−1

i + Δt
i,v in each Cv ∈ Ci. For instance, using

Cvi
we obtain,

Δt
i,vi

=
α(v(2)t−1

i ) − β(v(4)t−1

i ) + f(vt−1
i )

(2α + 6β)

where v
(k)t

i is the k-th derivative at time t at vi. For sim-

plicity, we have assumed αi = α, βi = β,∀i = 1, . . . , n,∀t.
We generate |N (vi)| estimates for the update at vi, one for

each constraint Cv ∈ Ci. In order to combine these estimates

into a single update, we need to equalize them. This may be

achieved by a simple averaging operation but one may seek a

more appropriate equalizer to obtain better performance. For

results in this paper,

Δt
i =

∑
v∈N (vi)

Δt
i,v

|N (vi)| , ∀i = 1, . . . , n
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Fig. 1. Factor graph representation of Active contours.

(a) Bipartite graph AC FG encodes A. Variable node Vi is

sqaure equals with initial condition v0. Composite function

node Fj is circle plus. (b). Bidirectional edge update (c).

Structure of the composite plus node.

To achieve these updates systematically and across itera-

tions, consider the FG given in Fig. 1. This bipartite graph

encodes the structure of the matrix A. Node Vi corresponds

to variable vi (soft equals) and the function node Fj (soft plus)

corresponds to the constraint Cvj
. There is an edge between

Vi and Fj (i.e. Vi ∈ NFG(Fj) and vice versa) whenever

vj ∈ N (vi). At each time t, Vi has a belief bt
i based on all

input messages and at the end of the algorithm, we threshold

Th(bξ(t)
i ) to get the final values of vi, ∀i = 1, . . . , n. The

computation on AC FG may be done using the Message pass-

ing schedule given in Algorithm 1. The stopping rule ξ(.)
may be t ≤ T or till the contour stabilizes. For the nu-

merical setting discussed above, μt
Vi→Fj

= bt
i = bt−1

i +
(
∑

Fj∈NF G(Vi)
μFj→Vi)/|NFG(Vi)|, μt

Fj→Vi
= Δt

i,vj
and

v
ξ(t)
i = Th(bξ(t)

i ) = b
ξ(t)
i . Next we derive a Message pass-

ing formulation using Gaussian messages on FGs of linear

models [5], [6]. To extend the above framework to a statisti-

cal setting, we let vt
i = (xt

i, y
t
i) be a bivariate Gaussian r.v’s,

i.e. Vi ∼ N2(mx,my, σx, σy, ρ). Note that the parameters

mx,my denote the center of spatial certainty and σx, σy de-

notes the spread along the image dimensions.

Control point updates in AC energy minimization may

be seen as output from a linear system {Xt = AXt−1 +
BUt; Yt = CtXt} with vt = Xt, Ut = 0, Ct = I ⇒ Yt = vt

and with initial conditions v0. We derive a novel Gaussian

Message passing algorithm for AC by using the message up-

Fig. 2. Gaussian message update rules (univariate). (a) Soft

plus (b) Product gate (c) Soft equals

date rules for soft plus and soft equals derived in [7] for a

vector setting. For the sake of simplicity and space, we will

only state the message update rules for the univariate Gaus-

sian messages N (m,σ2) in Fig. 2. This is to motivate the es-

sential idea but our algorithm uses the messages in a generic

setting that are elegantly derived in [5]. The messages passed

along the edges of the AC FG and beliefs of variable nodes

are parameters of bivariate Gaussian distribution. We thresh-

old as v
ξ(t)
i = (xξ(t)

i , yξ
i (t), Th(bξ(t)

i ) = (mx, my).
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Fig. 3. Shape detection using Active contours (T is the num-

ber of iterations required for convergence): (a), (b), (c) us-

ing Dynamic programming (d), (e), (f) Message passing al-

gorithm

4. SIMULATION RESULTS

We simulated shape detection using Active contours on ran-

domly generated convex polygons with number of sides rang-

ing from 3 to 50 using ACs of sizes n, 32 ≤ n ≤ 100. The im-

ages were grayscale with varying amount of Gaussian noise.

Fig. 3(d), 3(e), 3(f) show convergence results from specific

runs of the Message passing algorithm. We define the num-

ber of contour points which do not lie on any of the sides

of the polygon (after the contour stabilizes) as contour er-
rors and hence we have Contour Error Rate (CER) = (num-
ber of contour errors)/n. All four algorithms, namely Euler-

Lagrange method (with and without Gaussian filtering), Nu-

merical Message passing and Gaussian Message passing were

rigourously tested for accuracy and computational complex-

ity (number of iteration required for convergence). The re-

sults of the simulations are shown in Fig. 4. along with the

average number of iterations to convergence. We observe that

the performance of all four algorithms improves as the noise

decreases but the Gaussian Message passing algorithm offers

substantial gains in CER and number of iterations required for

convergence even in presence of higher noise levels. As

5. CONCLUSIONS

In this paper we have formulated energy minimization in Ac-

tive contours as an instance of Gaussian Message passing on

Factor graphs to obtain substantial gains over existing numer-

ical methods in terms of computational complexity, perfor-

mance and robustness. This suggests that by making suitable

statistical assumptions about the system, the existing numer-

ical techniques may be extended to derive Message passing

algorithms which exhibit improved computational complex-

ity, numerical stability and robustness to noise.

Fig. 4. Contour error rate (CER) for varying (Gaussian) noise

levels (1/σ) and Mean number of iterations for convergence

(T). Contour size = 50. Compared algorithms are Euler-

Lagrange (with and without Gaussian filtering), Numerical

Message passing, Gaussian Message passing (with filtering)

The problem of ACs is a specific instance of energy min-

imization which in often is computationally intractable. This

approach may also be extended to combine the Message pass-

ing algorithm for energy minimization with unconstrained op-

timization methods like gradient descent to produce powerful

algorithms which are computationally tractable.
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