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ABSTRACT
By using a formulation similar to a Sobolev Gradient for the
Natural Gradient a new algorithm has been developed that
converges faster, uses fewer additional parameters and has
smaller storage requirements all while not overtraining to a
training set. Simulation results show the improvements for
an applicable problem.

Index Terms— Algorithms, Feedforward Neural Networks,
Newton Methods

1. INTRODUCTION

Many signal processing problems are formulated to mini-
mize the norm of an error vector [1]. The solution to these
formulations is either a vector or a matrix. By applying a
similar formulation to the error function of a multilayer per-
ceptron and understanding the structure of the error func-
tion, a new algorithm has been developed. The performance
of this algorithm is compared to the original backpropaga-
tion method [2] and the Adaptive Natural Gradient [3] [4].
In [5] prior research is reported.

2. SOBOLEYV GRADIENTS EXPLAINED

This section explains Sobolev Gradients and the new for-
mulation of the gradient of a multilayer perceptron.

2.1. Sobolev Spaces

A Sobolev Space [6] [7] is an inner product space on func-
tions. Sobolev Spaces are commonly used to find solutions
to partial differential equations. Let f(*)(t) denote the k-
th derivative of the function f(¢). Then the inner product
between two functions in a Sobolev Space is defined as

Z f(k)

k=0"?

g " (t) dt. (1)
The norm of an element of a Sobolev Space is then
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A Sobolev Gradient [8] is derived from the norm of the
Sobolev Space. The gradient of h(f) = 1| f||* is

Vh=(f,f. ., ™). 3)

2.2. Application to Multilayer Perceptrons

This article does not describe a Sobolev Space comprised
specifically of multilayer perceptrons. However, it does use
a similar structure. The gradient of a simple perceptron is a
matrix. The gradient of a multilayer perceptron is a block-
diagonal matrix and its structure is similar to that of the
gradient given in (3). Understanding that the inner prod-
uct space of the parameters differs from the inner product
space of the errors is the key principle of this new method.

The inner product of a Sobolev Space is the sum of in-
ner products between the derivatives of two functions. The
backpropagation algorithm [2] uses the chain rule for dif-
ferentiation to compute the gradient for each network layer
(n.b. a network layer is a matrix). The learning format of a
multilayer perceptron and the training set dictate to a large
extent the structure. The error function is the sum of the
error vectors’ Lo norms. Instead of one index for the order
of the derivative there are two indices: one for the training
example and another for the network layer.

2.2.1. Error Function of a Multilayer Perceptron

The parameters of the multilayer perceptron are represented
as the block-diagonal matrix

A, 0 0
0 A,q -+ 0

A= . . . - 4
0 0 A

The output of the network given input x is the result of
the vector-valued function F(x, A). Let {®y,...,P,,} bea
set of recursively defined functions. The output function F

is equal to the m-th function. That is F(x, A) = ®,,(x, A).
Cpl(X, .A) = h1 (Alx) (5)

<I>i(x, .A) = hi (Aiq)i—l (X, .A)) (6)
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Each h; is a differentiable nonlinear threshold function
with Jacobian matrix H;. The error function of a multilayer
perceptron is given by

1 < 1
J(A) = §ﬁz lyx — F (xi, A)|* + 3¢ 1A%, )
k=1

The « and 3 in (7) are hyperparameters in prior distri-
butions of the norm of the parameter .4 and the SNR of the
data respectively [9].

2.2.2. Directional Derivative

Let v(t) = A + ¢P be a curve through the set of block-
diagonal matrices as described in (4). The directional deriva-
tive of the curve 4(0) = P will be assumed to be the direc-
tion of steepest descent. The inner product of the gradi-
ent with the direction of steepest descent is the directional
derivative.

(P,VJ>:%i_%%[J(A+tP)—J(A)]. (®)

To solve this equation for VJ, the ¢ must be broken out
of the expression F(x, A + tP).
2.2.3. Taylor Series Expansion

For a function of several variables f, the first two terms of
the Taylor series expansion about X is

fx+1tp) = f(x) +tVf(x)"p.

Similarly, for the mapping h(Ax), there is a Taylor se-
ries expansion about the matrix A.

h((A + tP)x) = h(4x) + tH(Ax)Px )
In (9), H(Ax) is the Jacobian matrix of h at the point

u = Ax, _
H(u) = [(Q)hz} .
auj u=Ax

2.2.4. Error Function Gradient

The output function F(x,.4) can be rewritten as

D,,(x,A)
F(x,A)=[ 0 - 0 : 10)
(bl(x7 A)
For each threshold function h;,
Hi(z) = {%} (11)
azl z=®;_1(x,A)

is the respective Jacobian matrix.
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As described in [2], the error is propagated backwards
by the chain rule. The matrices { B, ..., By, } are the back-
propagation transformations. They are determined recur-
sively from the Jacobian matrices of the threshold func-

tions { Hy, . .., H,, } and the multilayer perceptron parame-
ters {A1,..., Ap}.
Bm(x) =H, ((I)m—l(xa -A)) (12)

BZ(X) = Bi+1 (X)Ai+1Hi ((I)i—l (Xa -A)) (13)

These transformations are assembled in a block-diagonal
matrix to form the backpropagation transformation,

By (x) 0 0
0  Bp(x) -+ 0
Blx)=| . : s
6 0 Bl.(X)

The multilayer perceptron output function can then be
expanded as

F(x,A+tP)=F(x,A)+t[I 0 0] B(x)Pu
(15)
where u is the vector of inputs defined as
(bmfl (X7 A)
u= : (16)
(I)l (X, A)
X

The inner product of the gradient V.J and the direction
P can now be rewritten as

(P,VJ) = —ﬁi <B(X;€)Pu;€,Izk> + a(P, A)
k=1

-0 z”: (P, B(Xk)TIzku{> + a(P, A)

k=1

=0 Z Z (Pi, Bi(x) " 2x®i—1 (xz)")

k=11i=1

+ay (P A)
=1

where z; = yj, — F(xp, A), T = [I I 1" and
the matrix B} is the backpropagation matrix for layer ¢ and
training example k. Let ®g(xy, A) = xk.

Thus, the gradient of the error function for layer ¢ can
be rewritten as

VJ; = —52 Bi(xi)" 2 ®i1 (x)" + @A (17)
k=1

The gradient VJ is a block-diagonal matrix with each block
denoted as V J;.



2.3. Summary

The innerproduct in a Sobolev Space is the sum of the inner
products of the derivatives of two functions. Similarly, the
inner product of two multilayer perceptrons is the sum of
the inner products of their weight matrices.

The Sobolev Gradient of a function is a vector com-
posed of a function and its derivatives. The Sobolev Gra-
dient of a Multilayer Perceptron is a block-diagonal matrix
of gradients of each layer. Each gradient is essentially the
backpropagation matrix multiplied by the outer product of
the error vector and the input vector to the specific layer.

This organization produces an algebraic structure that
allows an easy formulation of the Natural Gradient.

3. NATURAL GRADIENT

The natrual gradient estimates the Riemannian metric G(.A)
at every point in the parameter space of all possible values

of A.

3.1. The Fisher Information Matrix

The metric for estimation problems is the Fisher Informa-
tion Matrix [3]. The probablistic models for the errors and
the weights simplify the Fisher Information Matrix.

GA) =E[(VI)(VI)T].

The Fisher Information Matrix of a multilayer percep-
tron is a block-diagonal matrix. Each block corresponds to
a specific layer ¢ and is

(18)

Gi =8> _|1®i1(xk)lI* Bi(xx) " zrzf Bi(xx) + al.
k=1
(19)
3.2. Learning Rule

The learning rule for batch-training a multilayer perceptron
is given as
Arpr = A — i G(A) IV I (Ay). (20)

The index variable ¢ denotes the learning epoch. The learn-
ing rate for the learning epoch is 7.

3.3. Comparison with Other Methods

The Adaptive Natural Gradient [4] and the Levenburg-Marquardt

algorithm [10] are two methods that function similarly to
this Sobolev Natural Gradient. The advantage that this method

Let {mq,msa, ..., mp} represent the number of nodes
in each layer of a multilayer perceptron. The number of ele-
ments in the Fisher Information Matrix for the Sobolev and
Adaptive Natural Gradient methods are given in (21) and
(22) respectively. For example, if a multilayer perceptron
had dimensions (10, 10,10, 5) then the FIM for the Adap-
tive Natural Gradient would have 62,500 non-zero elements.
The Sobolev Natural Gradient would only have 225.

N=mi+mi+---+mi 1)

N = (mymg +moms + - +mp_1myg)? (22)

Levenburg-Marquardt has the same number of non-zero
parameters in the matrix it inverts as the Adpative Natural
Gradient. The only advantage it has over the Sobolev Gra-
dient is the use of a trust region method to determine the
learning rate for each epoch. A trust region method could
also be used with this Sobolev Gradient method to deter-
mine the learning rate.

4. EXPERIMENTAL RESULTS

The problem chosen to compare performance is decoding a
noise-corrupted (10,5) Low Density Parity Check code [11].
This problem was chosen because it is easy to generate a
large number of examples. It is a also an engineering prob-
lem with practical application. The network has ten inputs
and a bias, three layers each with ten hidden units and a
bias, and five outputs that are the decoded message. The
hyperparameters were set as & = 0.01 and 3 = 0.01.

(10,5) LDPC Decoding Problem
20 T T T
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Fig. 1. Training Algorithm Sum-Squared Error

Figure 3 shows that all three algorithms train networks

has over the first is that the Fisher Information Matrix has
fewer non-zero elements and is therefore computationally
advantageous.

that perform equally well. Figure 1 shows that the Sobolev
Natural Gradient Learning (SNGL) algorithm converges much
faster than the Ordinary Gradient Learning (OGL) algorithm
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(10,5) LDPC Decoding Problem
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Fig. 3. LDPC Decoder Bit Error Rate

but that the Adaptive Natural Gradient Learning algorithm
(ANGL) converges even faster. However, Figures 2 and 3
show that the ANGL algorithm overtrains without any in-
crease in performance. The larger norm of the weight ma-
trix means that when the network is right each output is very
close to the target value. The weights are so large as to shape
the resulting threshold functions so that they are almost step
functions. The SNGL algorithm avoids this by using a prior
distribution on the weights.

5. CONCLUSION

The error function of a multilayer perceptron is similar in
structure to the norm in a Sobolev Space. Forming the
Sobolev Gradient as a block-diagonal matrix means that the
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Fisher Information Matrix is also a block-diagonal matrix.
This simplifies the inversion of the matrix to the inversion
of the blocks. The hyperparameter of the prior distribution
guarantees that the block-diagonal Fisher Information Ma-
trix is well-conditioned.

This new training algorithm works as well as the Adap-
tive Natural Gradient method but requires many fewer pa-
rameters, is more computationally efficient and uses a prior
distribution on the weights. This Bayesian learning prevents
overtraining that is a flaw of many learning algorithms.
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