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ABSTRACT

We propose a dynamic Bayesian framework for sensor esti-

mation, a critical step of many machine condition monitor-

ing systems. The temporal behavior of normal sensor data

is described by a stationary switching autoregressive (SSAR)

model that possesses two advantages over traditional switch-

ing autoregressive (SAR) models. First, the SSAR model re-

moves time dependency of signals during mode switching and

fits sensor data better. Secondly, the SSAR model is station-

ary in that at each time, sensor data have the same distribution

which represents the normal operating range of a system; this

ensures that estimates are accurate and are not distracted by

deviations. During monitoring the deviation covariance is es-

timated adaptively, which effectively handles variable levels

of deviations. Tests on gas turbine data are presented.

Index Terms— Machine condition monitoring, autore-

gressive, Kalman filter, Gaussian mixture model

1. INTRODUCTION

The objective of machine condition monitoring is to predict

failures of complex systems to avoid costly damages. When a

machine works properly, its sensor data should be distributed

in a normal operating range. Deviations from this range may

indicate a fault. We address sensor estimation, a critical step

in many condition monitoring systems [1]. Specifically, given

the observation of sensor values y, we estimate the hidden x,

the fault-free values that sensors should have if the system

operates normally. Based on the locations and magnitudes of

deviations (y − x), various rules can be designed for fault

diagnosis.

Most widely used sensor estimation algorithms such as

Auto-Associative Neural Networks (AANN)[1], the multi-

variate state estimation technique (MSET) [2] and support

vector regression (SVR) [1], attempted to establish a deter-

ministic mapping network from y to x. These methods desire

a very large training pair set {yi,xi}i=1:N representative

of all possible deviations, which is seldom available. Our

previous work [3] achieved much better performances via a

Bayesian framework, in which we mapped y to x probabilis-

tically and adaptively without the need for a large training

pair set. However, all the above methods ignored the tempo-

ral information richly present in sensor signals and only used

yt at time t to estimate xt.

In this paper, we extend our previous work by using all

available observations y1:t to estimate xt. In particular, we

present a stationary switching autoregressive (SSAR) model

to model the joint distribution of x1:t. Our SSAR model dif-

fers from the conventional switching autoregressive (SAR)

model [4] mainly in the following aspects.

First, the SAR model assumed that dependency between

xt and xt−1 always exists. However, for a machine such de-

pendency becomes very weak during mode switching and it is

not appropriate to use an autoregressive (AR) model at such

time. In contrast, our SSAR model assumes that xt and xt−1

are independent during mode switching. Such independence

assumption was also found to be useful in modeling music

signals [5].

Secondly and more importantly, the SAR model did not

offer a way to describe the normal operating range of a ma-

chine. This does not prevent its success because in many ap-

plications, the signal xt (e.g., the velocity and position of a

target in a visual tracking system) is not confined to a cer-

tain range. However, in machine condition monitoring the

normal signal xt must be within the normal operating range.

Our SSAR model is strictly stationary in that for all time

t = 1, 2, ...,∞, xt has the same distribution P (xt), which

represents the normal operating range. This is essential to en-

sure that estimates are not distracted by any deviations.

This paper is organized as follows. In Sect.2, we briefly

review our prior work. The new model is described in Sect.3.

Test results are presented in Sect.4. Sect.5 summarizes this

paper.

2. OUR PREVIOUS ALGORITHM

In our previous study, we presented a Bayesian sensor estima-

tion algorithm without using temporal information. During

training, we used normal operation data to learn the distrib-

ution P (xt) of normal sensor signals via a Gaussian mixture

model (GMM). During monitoring, the observation yt was

modeled as a Gaussian distribution conditioned on xt:

P (yt|xt) = N (yt|Cxt,Θt), (1)

where C is the observation matrix and is needed when sensor

data at consecutive data points are concatenated into one col-

umn vector xt. Θt, the covariance of deviation (yt −Cxt) is
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an unknown diagonal matrix. The sensor estimation problem

was formulated as computing the conditional expectation of

xt given yt:

E(xt|yt,Θt). (2)

We employed the Expectation-Maximization (EM) algo-

rithm [6] to estimate (2) and Θt, simultaneously. The EM al-

gorithm is a powerful tool for maximum likelihood estimation

of parameters of P (yt) in the presence of hidden variables. In

our case, xt is viewed as the hidden variable and Θt is the pa-

rameter. We alternate the computation of (2) in the E-step and

the estimation of Θt in the M-step. We output the result of

(2) as the estimate of xt when the algorithm converges. This

model is able to handle different levels of deviations through

Θt which is adaptively estimated for each input yt. If the ith
sensor value yi is normal, the corresponding variance θi will

be small such that xi ≈ yi; if a sensor value yi is faulty, θi

will be large to allow xi to be different from yi.

3. THE PROPOSED ALGORITHM

We give an overview about how our new method works. Sim-

ilarly to [3], the normal operating range of a machine is pre-

sented by a Gaussian mixture model (GMM). However, in

[3], xt was independently drawn from this GMM at time t. In

contrast, in our new model the normal signal xt can evolve in

each Gaussian distribution (mode) following an autoregres-

sive model or choose to jump to another mode. We first de-

scribe how normal signal xt evolves in each mode in Sect.3.1.

In Sect.3.2 we elucidate how xt progresses in the full normal

operating range. During monitoring, given a sequence of ob-

servations y1:t, we estimate xt, as shown in Sect.3.3.

3.1. The stationary autoregressive model

We first present a stationary autoregressive (STAR) model.

The dynamics between xt and xt−1 is described by a condi-

tional Gaussian distribution:

P (xt|xt−1) = N (xt|A(xt−1 −m) + m,Q), (3)

where A is the state transition matrix and covariance Q spec-

ifies the uncertainty of such transition. Eq.(3) depicts an AR

model with mean m. We extend it to the STAR model by

additionally requiring:

P (x1) = N (x1|m,V),V = AVAT + Q. (4)

We now sketch the proof of this model’s stationarity. Based

on (3) and (4), P (x2) = N (x2|m,V). Using induction, we

have xt = N (xt|m,V). Thus, P (xt) is the same function

for any t, which completes the proof.

The parameters of the STAR model include m, V, A
and Q . Standard methods such as maximum likelihood es-

timation (MLE) or Yule-Walker estimation for AR models

[7] is not directly applicable due to the new constraints in

1ty ty

tx

ts

1tx

1ts

Fig. 1. The proposed model for sensor

estimation. During training, we learn

the SSAR model (consisting of x and s
nodes). During monitoring, we estimate

E(xt|y1:t).

(3) and (4). Standard ways to solve this problem are usu-

ally gradient-based methods (e.g., constrained quasi-Newton

method), which are both time consuming and easily trapped

in local extrema. Using the stationarity of xt, we can derive

the following simple but very efficient learning method. First,

m and V are learned from sample mean and sample covari-

ance, respectively. We then learn A from (3) using MLE.

Finally, Q is set to V−AVAT . Q obtained in this way is not

necessarily positive definite. Thus, we search for the largest

r ≤ 1 such that Q = V − r2AVAT is positive definite. The

A accordingly is replaced by rA. In our experience, r ranges

from 0.95 to 1.

3.2. The stationary switching autoregressive model

We now describe all the dependences and constraints in the

SSAR model:

P (st = j|st−1 = i) = Zij , P (s1) = πj , (5)

P (xt|xt−1, st = j, st−1 = i) ={
N (xt|Aj(xt−1 −mj) + mj ,Qj) if i = j

N (xt|mj ,Vj) if i �= j
, (6)

π = πZ, Vj = AjVjAT
j + Qj . (7)

In the above equations, Eq.(5) describes a Markov chain with

M possible modes. st is the discrete mode variable taking

values between 1 and M . Eq.(6) describes possible transitions

from xt−1 to xt. If mode st is the same as the previous mode

st−1, the previous STAR model continues (see Sect.3.1); dur-

ing mode change, the previous xt−1 is forgotten and xt is

randomly drawn from the Gaussian distribution of the new

mode. Fig.1 (excluding y nodes) visualizes all these depen-

dencies. The stationarity of the SSAR model is enforced by

(7). We omit the proof due to space limit.

The SSAR model includes the following parameters: π,

Z, mj , Vj , Aj , Qj , where j = 1, 2, ...,M . By using the

stationarity of xt, we learn these parameters sequentially. In

general, we proceed by first learning mj , Vj and Z, simi-

larly to the learning algorithm of the hidden Markov model

(HMM). Then, Aj is estimated only using (6) via MLE. Fi-

nally, two constraints are enforced by setting π = πZ and

Qj = Vj −AjVjAT
j .

A simpler algorithm can be derived, if training data can

be partitioned into different modes. With the partitioned data,

we can easily obtain Z and we set π = πZ. A STAR model
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described by mj , Vj , Aj , Qj for mode j is then learned

using the training data under this mode (see Sect.3.1).

3.3. Monitoring

During monitoring, we inherit the observation model from

our previous work; i.e., yt is conditioned on xt via (1). Fig.1

shows the dependencies of all random variables. The sensor

estimation problem is now formulated as computing the con-

ditional expectation of xt given y1:t:

E(xt|y1:t,Θt). (8)

We again employ the EM algorithm to compute (8) by max-

imizing P (y1:t). This EM procedure resembles the learning

of a switching Kalman filter (SKF) [4] but is much simpler,

because the only unknown parameter is Θt (Θ1:t−1 were es-

timated in the past) and all SSAR-related parameters were

already learned during training. Learning SKF is a standard

procedure (see [4] for details). We only sketch the major steps

here.

In the E-step, the goal is to compute P (xt|y1:t) using the

current estimate of Θt. For the standard SKF, this is a mixture

of M2 Gaussians. Each Gaussian P (xt|y1:t, st = j, st−1 =
i) with a probability P (st = j, st−1 = i|y1:t) is obtained

by Kalman filtering. To avoid exponential mode growth,

collapsing was used to merge M Gaussians P (xt|y1:t, st =
j, st−1 = i) (where i = 1, 2, ...,M ) into one Gaussian

P (xt|y1:t, st = j). In contrast, our Fig.1 model only involves

2M Gaussians, since all M − 1 Gaussians P (xt|y1:t, st =
j, st−1 = i) (where i �= j) are equal. Thus, in our collapsing

step, only two Gaussians are merged into one. In the M-step,

Θt is estimated. We output the result of (8) after the EM

algorithm converges.

4. TEST RESULTS

We applied the proposed algorithm to monitor gas turbines.

In its steady state, a gas turbine typically operates either in a

full load mode or a part load mode. We refer to the switching

between these load modes as a transition mode. There are

thus a total of three modes (M = 3). We consider artificial

faults, because by knowing the ground truth (original) value

of each sensor we can evaluate sensor estimation accuracy

quantitatively.

The error measures we use are now introduced. Estima-
tion error of a sensor is the absolute difference between the

estimate and the ground-truth value. We distinguish three

types of estimation errors. En is the average estimation er-

ror of all sensors in the normal time range. Enf is the average

estimation error of all normal sensors in the faulty time range.

Eff is the average estimation error of all faulty sensors in the

faulty time range. Small values are preferred for all these er-

rors.

We selected 22 sensors useful for fault diagnosis to build

our models. These sensors are gas flow, power, inlet guide

vane (IGV) actuator position, inlet temperature, shell tem-

perature, shell pressure, eight blade path temperature sensors

and eight exhaust temperature sensors. Two types of devia-

tions were considered. In a step deviation, the deviation stays

at value v during the faulty time; in a drift deviation, the

deviation linearly varies from 0 to v during the faulty time.

We compared our SSAR model with SVR, GMM [3], hidden

Markov model (HMM) and the SAR model [4]. The HMM

was adapted from the SSAR model by removing dependency

xt−1 → xt and st−1 → xt in Fig.1. For SVR, GMM and

HMM, both yt and xt are 22-dimensional vectors. For our

SSAR model and SAR model, each xt is a 44-dimensional

vector containing data at t and t−1; thus, the observation ma-

trix C is a 22 × 44 matrix. The HMM and SAR model were

placed similarly in Fig.1 whose deviation covariance Θt was

adaptively estimated; this improved the performances of both

of them.

During training, data for each load mode were extracted

by applying an 1D edge detection algorithm to the IGV actu-

ator position sensor data. The remaining data were assigned

to the transition mode. These partitioned training data were

used to train GMM, HMM, SAR and SSAR models. A transi-

tion mode cannot be well represented by a STAR model, since

its data contain very high frequency. Therefore, we removed

time dependency from its STAR model by setting Aj = 0
and Qj = Vj . During monitoring, because any sensor can

experience deviations, the 1D edge detection used in training

is not reliable and is not used.

The tests are now detailed. We selected eight normal data

sets, each from a different power plant. The first 70 percent

of each four-month data set was used for training and the

rest was for testing (monitoring). Data for each sensor were

normalized using the mean and standard deviation computed

from the training data. The test data were evenly split into

two parts; faults were added to the second part and the first

part was left intact. For each randomly selected faulty sensor,

we randomly picked a deviation type and randomly generated

v within ±10σ (where σ is this sensor’s standard deviation)

and then added this deviation to the sensor in the faulty time

range. Such a trial was repeated four times. The number of

faulty sensors was also varied from one to four. There are thus

a total of 8 (data sets) ×4 (trials) ×4 (faulty sensors) = 128
tests.

Fig.2 shows the comparison results of the SSAR model

vs. other methods in terms of different estimation errors. The

scores of GMM are very similar to those of HMM and are

thus omitted. There are 128 (tests)× 3 (other methods) = 384

points in the Enf and Eff plots, but there are only 8 (data

sets) × 3 (other methods) = 24 points in the En plot, because

En does not vary with different faults. Note that certain points

representing the SVR and SAR models are located outside

the upper border of some plots due to very large errors. The

2079



0 0.02 0.04 0.06 0.08
0

0.02

0.04

0.06

0.08

SSAR

ot
he

r m
et

ho
d

En

SVR
HMM
SAR

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

SSAR

ot
he

r m
et

ho
d

Enf

SVR
HMM
SAR

0 0.1 0.2 0.3 0.4
0

0.1

0.2

0.3

0.4

0.5

SSAR

ot
he

r m
et

ho
d

Eff

SVR
HMM
SAR

Fig. 2. Estimation errors of the SSAR model vs. the SVR, HMM and SAR models

SSAR model is shown to outperform all other methods, be-

cause the majority of points lie above the diagonal line (equal

error line) in each error plot.

We adopt the Wilcoxon signed-ranks test to check whether

our conclusion is statistically significant as suggested by [8].

In our case, the null hypothesis is that the SSAR model does

not perform better than the other method. The p-values for all

3 (other methods) × 3 (error measures) = 9 hypothesis tests

are below 0.0001. Therefore, we reject the null hypothesis

and can claim that the SSAR model significantly outperforms

the other method in terms of all three error measures.

5. DISCUSSION AND SUMMARY

We use two examples in Fig.3 to show how the SSAR model

outperformed the SAR model. Fig.3 (top) shows the power

sensor data of a normal data set, for which estimates should be

close to observations. Both models produced nice estimates

in the full load (power ≈ 225) and the part load mode (power

≈ 150). However, during mode switching (e.g., at data points

530, 595), the SAR model continued fitting the data with an

AR model, leading to poor estimation results. Fig.3 (bottom)

shows a real-fault case where blade path temperature sensors

such as BPTC12A started drifting down at data point 170.

The SAR model continued fitting faulty data. As a station-

ary model, our SSAR model stopped following and produced

correct estimates within the normal operating range.

In a summary, we present a dynamic Bayesian model for

sensor estimation in machine condition monitoring. The nor-

mal behavior of sensor signals is modeled by a stationary

switching autoregressive model. Our SSAR model not only

describes the dynamics of normal sensor signals but also rep-

resents the normal operating range. During monitoring, dif-

ferent levels of deviations are handled by the deviation covari-

ance which is adaptively estimated via the EM algorithm.
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