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ABSTRACT

Positioning in wireless networks has gained significant ground as an
enabling technology for various applications such as event detection
and context awareness. Since these positioning systems rely on radio
features to locate a mobile, they are susceptible to non-cryptographic
attacks resulting from malicious alteration of the propagation en-
vironment. This paper proposes a sensor selection scheme for in-
creasing the resilience of fingerprinting-based positioning systems to
RSS-based attacks in the context of Wireless Local Area Networks
(WLAN). A distributed positioning scheme is proposed whereby
an estimate is obtained from each WLAN access point (AP). Sen-
sor selection is performed based on a nonparametric estimate of
the Fisher Information. Experimental results indicate superior per-
formance compared to existing methods and graceful performance
degradation in presence of RSS attacks.

Index Terms— Position measurement, radio position measure-
ment, security, multisensor systems, distributed estimation.

1. INTRODUCTION

The mobility of users of wireless networks has motivated the devel-
opment of a wide range of services offered as added value in existing
communication infrastructures. One such service is positioning, or
the automatic determination of a mobile’s location, for use in higher
level functions. These functions include event detection, network re-
lated services (e.g., routing and security), as well as context aware-
ness and location-based services (LBS).

Positioning using wireless sensors relies on the location depen-
dency of radio features such as time of arrival (ToA), time differ-
ence of arrival (TDoA), angle of arrival (AoA), and received signal
strength (RSS). Characterization of the relationship between physi-
cal positions and a given radio feature allows a positioning system to
locate a mobile device through observation of radio signals received
or transmitted by this device. The position-radio feature relationship
is highly dependent on the propagation environment as shadowing,
multipath, and non-line-of-sight propagation effects have a severe
impact on radio features. For this reason, position systems relying
on wireless radio features are susceptible not only to cryptographic
attacks, such as impersonation, but also to non-cryptographic at-
tacks launched by deliberate alterations of the propagation environ-
ment. Since the positioning estimates are often inputs to other sys-
tems, the sensitivity of positioning methods to malicious attacks is
of great concern [1]. This paper considers the problem of sensor
selection for improving the resilience of positioning systems to non-
cryptographic attacks. In particular, we propose a distributed esti-
mation and sensor selection scheme to address RSS-based attacks
in the context of an indoor Wireless Local Area Network (WLAN)
positioning system.

2. SYSTEM MODEL & RELATED WORK

WLANs are widely deployed in commercial and residential indoor
environments and RSS readings can be readily obtained from Net-
work Interface Cards (NIC) available on most mobile devices. These
two factors make RSS-based WLAN positioning an attractive solu-
tion in many applications.

Fig.1 depicts a typical WLAN positioning setup containing L
WLAN access points (APs). Since these APs may belong to differ-
ent networks, their exact coordinates are generally unknown to the
positioning system, rendering ranging-based positioning techniques
inappropriate.
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Fig. 1. The problem setup.

Positioning is carried out by utilizing the location dependency
of RSS. In indoor environments, severe multipath and shadowing
effects as well as non-line-of-sight propagation give rise to a time-
varying and complex RSS-position dependence. For this reason,
WLAN positioning systems characterize the RSS-position relation-
ship implicity, through the use of a method known as fingerprinting
or scene matching. In such an approach, training RSS measurements
are collected at a set of N anchor points with known coordinates.
During the online operation of the system, the incoming readings
from the mobile are matched against these fingerprints using vari-
ous method including the Euclidean distance [2] and statistical and
pattern recognition techniques [3]. Finally, a combination of the co-
ordinates of the anchor points whose fingerprint records best match
the observation are returned to the user.

As shown in Fig.1, fingerprints are stored on a central server and
positioning is performed on the mobile to preserve privacy.

2.1. Attack Scenarios

Fingerprinting-based positioning systems are vulnerable to malicious
attacks during both offline and online stages. During the offline fin-
gerprint collection phase, an adversary can impersonate APs (Sybil
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Fig. 2. System overview.

attack), or corrupt the training RSS data by jamming, partial atten-
uation or amplification, or by compromising APs. Impersonation
can be remedied by authenticating of beacon nodes [4] and corrup-
tions to training RSS values can be handled through collection of
data over various days. Moreover, as the training is performed of-
fline, validation and attack detection schemes [1] can be applied to
the data before use in the system.

Assuming the secure transmission of the fingerprint data to the
mobile client, this paper focuses on RSS-based attacks carried out on
the observed radio signal during the online operation of the system.
Such attacks again include impersonation, jamming, and modifying
signal strengths. Moreover, we limit the scope of this paper to non-
cryptographic RSS-based attacks where an adversary alters the RSS
readings through attenuation or amplification [5].

Most prior works addressing RSS-based attacks have focused on
range-based techniques where a position estimate is obtained from
distances to at least three landmarks with known locations. The
study of RSS-based attacks in the context of fingerprinting tech-
niques, however, has been very limited. In [1] a method for detection
of RSS-based attacks is proposed. The work of [5] proposes increas-
ing redundancy in the system by increasing the number of APs. The
traditional Euclidean distance is replaced with a median-based dis-
tance measure for comparing observation vectors to the fingerprints
to reduce the effect of outlier APs. The work of [6] uses a set of
static and mobile hidden base-stations for secure positioning.

We propose to improve the resilience of the fingerprinting-based
methods through sensor selection. In particular, the proposed method
selects a set of reliable APs from the set of available APs to perform
positioning. Such a technique is especially effective in the WLAN
context as the number of available APs is generally much larger than
the minimum three needed for positioning.

Existing WLAN positioning methods choose three or more of
the APs based on a priori knowledge. Selection methodologies in-
clude choosing a subset of APs with the strongest observation RSS
to decrease the probability of outage [2], minimization of correla-
tion between APs using divergence measures [3], and selection of the
most discriminant APs using the the entropy-based Information Gain
criterion [7]. Since such methods do not provide realtime quality as-
sessment, they are not suitable for use in detection and mitigation of
APs under attack. In contrast, this paper proposes the realtime selec-
tion of APs by using the Fisher information for assessing the quality
of the information provided by each AP.

3. PROPOSED METHOD

Traditionally, RSS readings at a given location i and time t are treated
as a vector ri(t) = [r1

i (t), . . . , rL
i (t)]′ where L corresponds to the

number of available APs in the environment. In this paper, we pro-
pose a distributed scheme whereby RSS reading from each AP are
treated individually. The individual estimates are then fused to pro-
vide the final position estimate. Such a distributed (estimation fu-
sion) approach is advantageous over its centralized (feature fusion)

counterpart as the quality of each AP estimate can be considered
during the fusion stage.

An overview of the proposed method is depicted in Fig.2. As
previously mentioned, in the proposed distributed approach, the po-
sition estimates are formed based on single APs. Positioning in two-
dimensional space, however, requires at least three APs. In order to
resolve ambiguities arising from the use of a single AP, a spatial fil-
tering step [3] is first performed to filter out anchor points far from
the current position of the mobile and localize the spatial search area
as described in Section 3.1. Next, the minimum mean squared error
(MMSE) estimate of the mobile position is formed for each AP us-
ing a nonparametric estimate of the conditional probability density
function as detailed in Section 3.2. Finally, a set of reliable APs is
selected based on the Fisher information associated with each esti-
mate and the results are fused to provide the final position estimate.
Sensor selection and fusion methods are discussed in Section 3.3.

3.1. Spatial Filtering

Spatial filtering aims to resolve ambiguities that arise due to the use
of a single AP and is performed based on the observation that points
that are close in the physical space, receive coverage from similar
sets of APs [3]. Denote a coverage vector as Ip = [I1

p . . . IL
p ] where

Ii
p = 1 if AP i provides coverage at p. The set of anchor points

retained by the filtering operation is denoted as {p(1), . . . ,p(N′)}
where p(1), . . . ,p(N) denotes an ordering of the anchor points based
on the Hamming distance between each anchor point’s coverage vec-
tor and that of the observation. The parameter N ′ indicates the num-
ber of anchor points retained after spatial filtering. Section 4 reports
on the effect of this parameter on positioning results.

3.2. Position Estimation

The fingerprint matrix for an anchor point pi = (xi, yi) is defined
as F(pi) = [ri(1); . . . ; ri(n)] where ri(t) = [r1

i (t), . . . , rL
i (t)]′ is

the vector of RSS readings from L APs at time t when the mobile
resides at pi [3], and n is the number of time samples collected at
pi. These samples are averaged to generate a single representative
training RSS value per anchor point. Thus, the set of location fin-
gerprints after spatial filtering is {(p1, r

a
1), . . . , (p′

N , ra
N′)} where

ra
i = 1

n

∑n
t=1 ra

i (t) is the mean RSS from the ath AP at pi.
Given an observation ra from AP a, the MMSE estimate of posi-

tion p is the posterior mean E(p|ra). This estimate is obtained from
the nonparametric estimate of the posterior density f(p|ra) [3]:

f(p|ra) =
N′∑
i=1

KHr (ra − ra
i )∑N′

i=1 KHr (ra − ra
i )

KHp (p − pi) (1)

where KH(·) is the d−dimensional Gaussian kernel defined as

KH(x) =
1

(2π)d/2|H|d/2
exp

(
−1

2
xH−1x′

)
. (2)
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The d×d diagonal matrix H defines the width of the kernel function
in each direction. The diagonal elements h1, . . . , hd are estimated
to minimize the Asymptotic Mean Integrated Square Error between
the true and estimated densities. These parameters are obtained as
hi = 1.06σ̂iN

1/5 with σ̂i is the sample variance of the training data
in the ith dimension. Using the Gaussian kernel in (1), the resulting
density can be interpreted as a Gaussian mixture:

f(p|ra) =
N′∑
i=1

wi exp

(
−1

2
(p − pi)H

−1
p (p − pi)

)
, (3)

where

wi =
KHr

(
ra − ri

a

)
∑N′

i=1 KHr

(
ra − ri

a

) . (4)

The MMSE estimate of the position (i.e., the conditional expec-
tation) and its covariance can be obtained from (3) by noting that the
Gaussian mixture can be approximated with a single Gaussian with
the mean and covariance shown below [8]

p̂a = E{p|ra} ≈
N′∑
i=1

wipi (5)

Ca = cov{pa|r} ≈
N′∑
i=1

wi

(
Hp + (pi − p̂a)(pi − p̂a)′

)
(6)

3.3. Sensor Selection & Fusion

Assuming that each estimate obtained from (5) is a corrupted version
of the true mobile position, the following observation model is used
for each AP

p̂a = p + εa, a = 1, . . . , A. (7)

where εa = p − p̂a is the estimation error associated with the
ath AP. These corrupted measurements must now be fused to obtain
the final position estimate p̂. To this end, the mean and covariance
of the estimation error from each AP are considered:

E{εa} = E{p − p̂a} (8)

cov{εa} = Ca + E{p − p̂a}E{p − p̂a}′︸ ︷︷ ︸
bias term

(9)

The estimation covariance Ca provides a measure of confidence
in a given estimate p̂a: the smaller the covariance, the higher the
probability that the estimate is close to the estimation mean. The
estimator of (5), however, is biased and E{εa} �= 0 [3]. Unfortu-
nately, the estimation bias is unknown in (8) and cov{εa} cannot be
calculated directly. For this reason, the minimum variance unbiased
estimate (MVUE) [9], cannot be applied readily. Instead, we apply a
two step procedure: we first select a set of APs with small estimation
covariance and then fuse this subset.

Sensor selection is performed based on the Fisher Information
obtained from each AP using the estimation covariance only. Define
the score for the ath AP as Ja = tr(C−1

a ) and let p̂(1), . . . , p̂(L)

denote the ordering of the APs based Ja. Given this ranking, a pre-
determined number of APs with the highest confidence scores are se-
lected. In this paper, the selection is performed adaptively by choos-
ing the APs whose score is at least 50% of the highest confidence
score. The set of selected APs is then

A = {a|Ja ≤ 1

2
max

i
Ji} (10)

The next step is to fuse the estimates from the selected APs to
obtain the position estimate. The use of the sample mean for fu-
sion of the individual estimates is not appropriate as the individual
estimates may be biased. Instead, we use the median as the fu-
sion operator to provide robustness to outlier APs. Mathematically,
p̂ = mediana∈Ap̂a.

4. EXPERIMENTS & RESULTS

In this section, we evaluate the resilience of the proposed method to
RSS amplification and attenuation attacks and report experimental
results based on RSS values collected in a real environment.

4.1. Attack Model

In prior literature [10], a linear attack model is considered whereby
attacked RSS values are simulated by perturbing the original mea-
surements by a deterministic constant across all APs. In this paper,
a similar attack model is used with the exception that RSS values
are corrupted by additive Gaussian noise instead of a deterministic
constant. This approach is motivated by the path loss model relating
the received signal power to the transmitted power [11]

Pr(dBm) = Pt(dBm)−10 log10 K−10γ log10

(
d

d0

)
−ψ(dBm)

(11)
In (11), Pr and Pt are the received and transmitted powers re-

spectively, K is a constant relating to antenna and average channel
attenuation, d0 is a reference distance for antenna far-field, and γ
is the path loss exponent. Finally, ψ ∼ N (0, σ2

ψ) reflects varia-
tions caused by random attenuation (log-normal shadowing) in the
environment. While the path loss model is not always accurate for
estimating distances in indoors, it provides insights into possible at-
tack models. RSS attacks may be launched through alteration of the
transmitted power or the propagation environment [10]. To simu-
late an RSS attack caused by the alteration of the environment, we
perturb the received power by adding Gaussian noise with variance
σnoise, essentially modifying the random component of the model
due to environmental attenuation.

4.2. Experimental Setup

Experimental results are reported for the dataset used in [3]. In this
dataset, a total of 33 APs are detectable throughout the floor, with
an average of 9.6 APs covering each anchor point. The measure-
ments are collected using a Toshiba Satellite laptop with a Pentium
M processor, an Intel PRO/Wireless 2915ABG Network Adapter,
and Windows XP operating system. RSS measurements are obtained
by a publicly available network sniffer software, NetStumbler1.

Fig.3 shows the experimentation area layout and depicts the an-
chor points as black circles. For each anchor point 100 samples are
collected at a rate of 1 sample/second. The laptop orientation is in-
dicated by arrows in Fig.3. Test measurements are collected over
two days, different than the training days, for 44 test points situated
on and off the training points with four different orientations of the
laptop. A total of 60 samples were collected per test point per orien-
tation at a rate of 1 sample/second.

1http://www.netstumbler.org
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Fig. 3. Map of the experimentation environment.

The positioning error is reported numerically as the Root Mean
Square Error (RMSE) averaged over the test points.

4.3. Results

Fig.4 shows the average RMSE as a function of the number of an-
chor points retained during the spatial filtering step. The results in-
dicate that spatial filtering is effective in counteracting the negative
effects of positioning with a single AP by excluding non-relevant
anchor points during positioning. Due to the time variance of the en-
vironment, and consequently RSS values, for N ′ < 0.2N all survey
points are excluded and no estimate is available.
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Fig. 4. Effect of spatial filtering on positioning accuracy. N is the
total number of anchor points.

Next, the resilience of the proposed method to RSS-based attack
is compared to that of the K-nearest neighbour method of RADAR
[2], and the median distance-based method of [5]. Fig.5 shows the
average RMSE as a function of the percentage of APs corrupted for
spatial filtering with N ′ = 0.25N . The Euclidean distance based
KNN method performs the poorest as no provision for attack miti-
gation is taken. The median-based technique of [5] requires that at
least half of the APs report true RSS values. As seen from Fig.5
this method performs poorly once the percentage of corrupted APs
exceeds 50%, especially as the noise variance is increased. For the
proposed method, the average RMSE remains relatively unchanged
for the case of σnoise = 5 even when all APs are corrupted. For
higher noise variance, the method exhibits a graceful degradation in
performance as compared with the other techniques. These results
indicate that the nonparametric estimate of the Fisher information
provides an effective means for assessing the quality of each AP.
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Fig. 5. Average RMSE for different percentage of corrupted APs.

5. CONCLUSION

In this paper, we proposed a distributed scheme for RSS-based WLAN
positioning. Resilience to RSS-based attacks was achieved through
the selection of APs used in positioning based on a nonparametric
estimate of the Fisher Information matrix. Experimental result in-
dicate graceful performance degradation even when RSS measure-
ments from all APs are corrupted. An interesting direction for future
work is the incorporation of position predications in sensor selection.
An anticipatory design can further enhance the selection of both the
anchor points and APs involved in positioning.
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