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ABSTRACT

We study trajectory inverse kinematics: to find a feasible trajec-
tory in angle space that produces a given trajectory in workspace. We
explicitly represent the multivalued inverse mapping by the modes
of a conditional density of angles given workspace coordinates, es-
timated by a particle filter. We find all the modes using a mean-shift
algorithm and then disambiguate the angle trajectory by minimising
over the set of modes a global constraint that penalises discontinu-
ous jumps in angle space or invalid inverses. We demonstrate the
method with a PUMA 560 robot arm.

Index Terms— inverse kinematics, particle filters, mode find-
ing, constraint minimisation.

1. INTRODUCTION

We consider the problem of trajectory inverse kinematics (IK) [1] of
a (say) robot arm, where given a sequence of positions x1, . . . ,xN

in (Cartesian) workspace of the end-effector, we want to obtain a
feasible sequence of joint angles θ1, . . . , θN that produce the x-
sequence (we do not consider dynamics in this paper). Given the
joint angles, the end-effector position is given by the forward kine-
matics mapping, x = f(θ), which is usually (but not necessarily)
known. However, the inverse f

−1(x) can take multiple values (e.g.
see elbow up/down in fig. 1), or for redundant manipulators (where
dim θ > dimx), an infinite number of them; this makes it difficult
to represent and compute f−1. At the same time, we want the recov-
ered sequence of joint angles to trace a continuous, realisable trajec-
tory. Importantly, our goal is not only to solve IK at each trajectory
point, but also to obtain an angle trajectory that is globally feasi-
ble (e.g. avoiding discontinuities or forbidden regions). Problems
related to IK arise in other areas: in computer graphics, where one
wants to achieve realistic animation of articulated characters (e.g.
[2]); in the articulatory inversion problem of speech, where an acous-
tic waveform (“position x”) may be produced by different vocal tract
shapes (“angles θ”) [3, 4], and we want to recover a physically fea-
sible sequence of vocal tract shapes that produce a given acoustic
utterance (“x–trajectory”).

The forward kinematics mapping f can usually be obtained in
closed form for a kinematic chain as a product of homogeneous
transformation matrices, one per link (however, we remark that this
is not always the case, as in articulatory inversion). There exist many
approaches to IK; we briefly review some of them here (see [5, 6] for
review). In analytic approaches, one tries to obtain the IK mapping
in closed form (e.g. [7]); this is only possible for certain types of ma-
nipulators, and even then it can be complicated. Localmethods [8, 6]
are based on linearising the forward mapping to obtain ẋ = J(θ)θ̇,
where J is the Jacobian of f (Resolved Motion Rate Control [8]).
This equation can then be integrated numerically in order to obtain
the global trajectory for θ. For redundant manipulators, where J has

more columns than rows, a unique value of θ̇ may be obtained by op-
timising a suitable objective (such as energy) over the nullspace of
the Jacobian; in particular, one can obtain the pseudoinverse method
by minimising ‖θ̇‖2, yielding θ̇ = J

+(θ)ẋ, at a computational cost
O(m2n) where m = dimx < n = dim θ. However, the idea
breaks down at singularities θ

∗, where J(θ∗) becomes singular; this
is caused by the existence of multiple inverse branches intersecting
at θ

∗. Also, the cost is high since many pseudoinverses of non-
sparse Jacobians must be computed, and the numerical error accu-
mulates over time. Other local methods [6] use an augmented set
of variables (ẋ, θ) rather than just ẋ. Another local method (well-
known in articulatory inversion) is analysis-by-synthesis, which di-
rectly finds an inverse value θ of f by iteratively minimising the
squared error E(θ) = ‖x− f(θ)‖2 with a numerical optimisation
method, e.g. gradient descent, where ∇E = 2J(θ)T (f(θ) − x).
Unfortunately, which inverse value is found depends on the initial
value for θ, and the iteration may also get stuck at non-inverse val-
ues where J(θ)T (f(θ) − x) = 0 but f(θ) �= x. However, the
method is useful if the initial θ is sufficiently close to the inverse
sought. Global methods [9, 10] propose a variational formulation
where the trajectory of θ minimises a functional

R
t1

t0
G(θ, θ̇, t) dt

(such as energy and manipulability) subject to the forward kinematic
constraint x(t) = f(θ(t)) and appropriate boundary conditions. The
trajectory is obtained by numerical integration of the corresponding
Euler-Lagrange equation. However, the method still suffers from
singularities [10] and needs the user to provide boundary conditions
that are often unknown. Thus, an important problem of many of
these methods are the singularities of the Jacobian. These corre-
spond to the intersection of multiple inverse branches (violating the
inverse function theorem), and while locally any of these branches is
valid a priori, globally perhaps only one is valid.

A machine learning approach to trajectory IK was proposed in
[13]. This directly models the multivalued inverse mapping θ =
f
−1(x) by learning offline a multimodal conditional density model

p(θ|x); its modes represent the inverse solutions for θ. Given a
trajectory in x–space, one finds all the θ–modes at each trajectory
point and then disambiguates the entire θ–trajectory by minimising
a continuity constraint with dynamic programming. Here we pro-
pose a tracking approach, where we construct a conditional distribu-
tion of θ (= unobserved states) given past and current x (= mea-
surements) using a particle filter; then, we apply mode finding and
constraint minimisation to recover the angle trajectory. Earlier work
on the related problem of articulatory inversion [11, 12] has used
(extended) Kalman filters (EKFs) to estimate the sequence of vocal
tracts {θn} that produce acoustics {xn}. However, EKFs cannot
represent multimodal distributions and so are unable to track mul-
tiple solution branches at once; this is crucial in IK since some of
these branches may turn out to be invalid in later points of the trajec-
tory. We describe our method next and demonstrate it in experiments
in section 3.
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2. TRAJECTORY INVERSE KINEMATICS BY TRACKING

Consider a given x–trajectory x1, . . . ,xN in workspace. Our overall
algorithm works as follows. (1) We run a particle filter (or smoother)
to obtain at each n = 1, . . . , N a conditional distribution p(θn|x1:n)
(or p(θn|x1:N )). (2) We run a mode-finding algorithm on each dis-
tribution to find all its modes, which represent the multiple inverse
solutions at each xn. (3) We obtain a unique θ–trajectory by min-
imising a constraint C + λF over the entire set of modes with dy-
namic programming. Steps 2–3 are the same as in [13]. Let us de-
scribe each step in detail.

Conditional density by tracking Our eventual objective is to ob-
tain the multiple inverses of each xn (i.e., values θ s. t. f(θ) = xn)
from the modes of the conditional distribution of angles θ given co-
ordinates x, p(θn|x1:n). We propose to construct the latter with a
nonlinear, nongaussian tracker, where we consider the coordinates
x as observed measurements and the angles θ as unobserved states.
Under the tracking framework [14, 15], the dynamic state-space model
is given by θn = θn−1 + ωn−1, xn = f(θn) + υn. We model the
dynamics p(θn|θn−1) as a random walk with Gaussian noise ωn,
and the measurement model p(xn|θn) is readily given by the for-
ward mapping f with Gaussian noise υn. If the posterior distribu-
tion p(θn|x1:n) can be assumed unimodal, extended Kalman filters
(EKFs) [14] can succeed. But, crucially, the posterior p(θn|x1:n)
for IK is multimodal due to the many-to-one forward mapping f . We
then consider particle filters (PFs), which can approximate multi-
modal distributions by a set of weighted samples (the particles), and
have demonstrated superior performance over EKFs in many nonlin-
ear, nongaussian problems. Various versions of PFs have been de-
veloped, including sequential importance resampling PF (SIR-PF),
sigma-point PF, unscented PF and others [15]. They mostly differ in
the choice of the proposal distribution, whose support should cover
the support of the true posterior. Here, we focus on the SIR-PF,
which uses the transition prior as the proposal distribution, but other
PFs would work as well as long as they can approximate multimodal
posteriors. Furthermore, one can refine the posterior distribution by
using all the measurements: p(θn|x1:N ). This leads to extended
Kalman smoothers (EKSs) and particle smoothers (PSs). We con-
sider two versions of PSs: forward-backward smoother (FBS), which
maintains the original particle locations from the PF but reweights
them; and two-filter smoother (TFS) [16, 17], which combines a for-
ward and a backward PF. The computational cost for M particles
is O(M) for PFs and O(M2) for PSs, which may be reduced to
O(M log M) by approximate, fast algorithms [18].

PFs (or PSs) only provide a set {θm

n , wm

n }
M

m=1 of weighted par-
ticles to approximate the posterior p(θn|x1:n) at time n. Here, we
use a Gaussian kernel density estimate to construct the conditional
density, p(θn|x1:n) =

P
M

m=1 wm

n exp(−‖θn − θ
m

n ‖
2 /2σ2), where

σ is the kernel width. Unlike most tracking work, we use all the
modes instead of just the mean as the statistical estimate from the
conditional density, as we must track multiple inverse branches.

Mode finding The conditional density p(θ|x1:n) has the form of
a Gaussian mixture (GM). Efficient algorithms for finding all the
modes of a GM exist [19] that iterate a hill-climbing algorithm from
every centroid of the GM. In particular, Gaussian mean-shift iterates

θ
(τ+1)
n =

P
M

m=1 p(m|θ
(τ)
n )θm

n

where the posterior probability p(m|θ
(τ)
n ) is the normalised version

of wm

n exp (−‖(θ
(τ)
n − θ

m

n )/2σ‖2). Gaussian mean-shift does not

require inverting matrices and takes O(kM2) whereM is the num-
ber of particles and k the average number of iterations per parti-
cle. The computational time can be drastically reduced, for example
discarding low-weight particles, or eliminating redundant particles
(having essentially identical locations and weights) which often oc-
cur during resampling; see [20] for other accelerations.

Global optimisation with dynamic programming Assume we
have collected for each step n in the trajectory all the modes (can-
didate inverses). In principle, each of these modes represents a cor-
rect solution for step n (following a certain solution branch), but a
given branch that is valid for part of the trajectory may be invalid
for another part (e.g. because certain joint angles’ values are for-
bidden due to mechanical constraints). In order to determine the
solution, we minimise a global, trajectory-wide constraint over the
set of modes. In this paper, we consider a constraint of the form
C + λF (for λ ≥ 0), where C =

P
N−1
n=1 ‖θn+1 − θn‖ represents

a continuity constraint (integrated 1st derivative). This penalises
discontinuous jumps in θ-space and encourages short trajectories.
F =

P
N

n=1 ‖xn − f(θn)‖ represents a forward constraint (inte-
grated workspace error), and penalises invalid inverses, i.e., modes
θn that do not map near the desired xn. This helps to eliminate
spurious modes produced by ripple in the density model. Global
minimisation of the constraint can be obtained by dynamic program-
ming in O(Nν2) where ν is the average number of modes per step
(usually very small), thus in linear time on the trajectory length N .
Computationally, this is generally negligible compared to the mode-
finding step.

3. EXPERIMENTS WITH A PUMA 560 ROBOT ARM

We illustrate the methods’ performance with known ground truth.
All experiments were repeated 20 times with random initialisations
for each run in order to calculate variance estimates of performance.

We consider a PUMA 560 robot arm (a widespread industrial
manipulator) with 3 dof for position θ = (θ1, θ2, θ3), 3 dof for
orientation (which we ignore), and a 3D workspace x ∈ R

3. The
(point) IK can be solved analytically for this robot [7] and yields
4 solution branches (two combinations of elbow up/down); we use
the implementation of the Matlab Robotics Toolbox [21]. We limit
the angle domain to [−π, π] × [−π, π] × [−π, π] in order to com-
plicate the topology of the inverse mapping. We run the traditional
pseudoinverse method and our approach with the following track-
ers: EKF, EKS, SIR-PF, FBS, TFS. The process and measurement
noises are isotropic with variances σ2

ω = 0.125 and σ2
υ = 0.005,

respectively. For SIR-PF/FBS/TFS we used M = 1000 particles
and a kernel density estimate width σ = 0.04. Fig. 1 illustrates
(for a 2D robot arm, which is easier to visualise) how the modes of
the conditional posterior on θ represent the inverses of f . Figs. 2–3
show reconstructions for a figure–8 and elliptical trajectories. Be-
cause of the symmetry of the forward mapping, there are several θ–
trajectories that produce the given x–trajectory. The pseudoinverse
method, being local, sticks to one of these trajectories from the be-
ginning (depending on its initialisation) and can never recover the
others later on. The same thing happens when using trackers such
as EKF/EKS which assume a unimodal distribution; they can only
recover one such trajectory, depending on initialisation. Likewise,
at singularities of the forward mapping (fully stretched arm), where
multiple inverse branches merge or diverge, these methods (pseu-
doinverse, EKF/EKS) choose one of the branches and the rest are
irreversibly lost. The problem with this local choice is that it may
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Fig. 1. Illustration for a 2D robot arm of using conditional modes to
represent multiple inverses. Right: a point x ∈ [0, 1]2 in workspace
can be reached by two joint angle configurations, elbow up/down.
Left: the two configurations are captured as the two modes of a con-
ditional density p(θ|x) obtained from a PF (contours). Its mean
(magenta dot) is not a valid inverse, mapping to a fully stretched
arm. The plots show a trajectory in x and θ space (blue) and the
particles (black dots) using a SIR-PF.

turn out to be wrong later on in the trajectory, e.g. only an elbow-up
configuration may be valid in certain workspace regions because of
mechanical limits on some angles. In our method, if using a multi-
modal tracker (SIR-PF, FBS, TFS) we are able to track all branches
(thus all solutions) at every time; it is only at the end that a glob-
ally valid trajectory (avoiding discontinuities) is obtained by min-
imising the constraint. Fig. 2 also shows how if we simply use the
mean of the PF distribution (instead of all its modes), a wrong, “av-
erage” trajectory is obtained. Table 1 gives the errors in θ and x wrt
ground truth for several trajectories. Generally, we find little differ-
ence among the 3 multimodal trackers tested (SIR-PF, FBS, TFS),
which all succeed in recovering the ground truth with good accu-
racy. We do occasionally find (results not shown) that, depending
on the initialisation, the SIR-PF may fail to track all the modes and
thus miss possible inverse branches (this could be corrected using
more particles). The smoothers (FBS, TFS) are more robust in that
the backward filter helps to recover such modes. We also obtained
very similar results using a smoothness constraint (second-order de-
rivative) instead of continuity; and using a continuity constraint only
(i.e., λ = 0), which indicates that the modes from the conditional
density are accurate representatives of the true inverses.

Table 2 lists average running times in seconds (per trajectory
point) with different trackers in our Matlab implementation. Most of
the runtime for SIR-PF is spent on the forward mapping fkine (in-
efficiently implemented in [21]). The PSs do not rely on the forward
mapping and thus appear to run faster.

Finally, we compared deriving the conditional density from a
particle filter with learning offline a conditional density p(θ|x) (e.g.
with a Gaussian mixture) given a training set of pairs (θn,xn), as
done in [13]. The latter gave slightly lower reconstruction errors
(θ/x spaces: elliptical, 0.071/0.029; figure–8, 0.081/0.027; open,
0.173/0.055). However, offline collection of such training data may
be a problem, as it is difficult to sample a high-dimensional space.

4. CONCLUSIONS

We have considered the problem of trajectory inverse kinematics,
which is hard because of the multiple solutions of (pointwise) IK
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Fig. 2. Reconstruction of a figure-8 trajectory for the PUMA 560
robot arm. Left: θ-space, right: x-space. Top: pseudoinverse, EKF,
EKS. Middle: conditional means from SIR-PF, FBS, TFS. Bottom:
conditional modes from SIR-PF, FBS, TFS and constraint C + λF .

Table 2. Run time per trajectory point (sec.),M = 1000 particles.
pseudoinv EKF EKS SIR-PF FBS TFS
0.03 0.015 0.017 1.4 0.8 0.8

and the existence of singularities, and because of the need to recover
angle trajectories that are feasible (e.g. avoiding discontinuities). We
explicitly represent multivalued mappings by exploiting the power
of particle filters to represent multimodal distributions and using a
mode-finding algorithm for Gaussian mixtures—unlike much track-
ing work, which simply uses the mean. The final solution is ob-
tained by minimising a global constraint that represents physical re-
alisability. An advantage of the particle filter over offline learning
of a conditional model is that we do not need to collect a training
set that samples the angle space (always hard in high dimensions).
The method is applicable to other inverse problems over trajectories,
such as articulatory inversion in speech, trajectory IK in computer
graphics and articulated pose tracking in computer vision.
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Table 1. Reconstruction errors for PUMA 560 robot arm (xn: given x–trajectory, θ̂n: reconstructed θ–trajectory, θn: true θ–trajectory).
Angle reconstruction error 1

N

P
N

n=1 ‖θn − θ̂n‖ (rad)

Trajectory pseudoinv EKF EKS SIR-PF mean FBS mean TFS mean SIR-PF C + λF FBS C + λF TFS C + λF
Elliptical 0.072 0.274 0.149 1.954 ± 0.654 0.925 ± 0.655 1.304 ± 0.898 0.116 ± 0.025 0.116 ± 0.025 0.100 ± 0.028
Figure–8 0.076 0.324 0.207 1.791 ± 0.520 1.239 ± 0.969 1.505 ± 0.807 0.141 ± 0.014 0.141 ± 0.014 0.144 ± 0.010
Open 0.042 1.230 0.706 2.543 ± 0.925 1.157 ± 0.996 0.826 ± 0.160 0.150 ± 0.028 0.150 ± 0.000 0.150 ± 0.028

Workspace reconstruction error 1
N

P
N

n=1 ‖xn − f(θ̂n)‖

Trajectory pseudoinv EKF EKS SIR-PF mean FBS mean TFS mean SIR-PF C + λF FBS C + λF TFS C + λF
Elliptical 0.025 0.084 0.045 0.523 ± 0.182 0.052 ± 0.037 0.320 ± 0.236 0.033 ± 0.005 0.033 ± 0.005 0.029 ± 0.003
Figure–8 0.019 0.083 0.059 0.409 ± 0.117 0.039 ± 0.022 0.252 ± 0.111 0.031 ± 0.002 0.031 ± 0.003 0.033 ± 0.005
Open 0.007 0.252 0.261 0.940 ± 0.405 0.119 ± 0.095 0.079 ± 0.037 0.042 ± 0.006 0.041 ± 0.006 0.035 ± 0.006
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Fig. 3. As fig. 2 but for an elliptical trajectory.
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