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ABSTRACT
This paper introduces an ensemble approach for electroen-
cephalogram (EEG) signal classification, which aims to over-
come the instability of the Fisher discriminant feature extrac-
tor for brain-computer interface (BCI) applications. Through
the random selection of electrodes from candidate electrodes,
multiple individual classifiers are constructed. In a feature
subspace determined by a couple of randomly selected elec-
trodes, principal component analysis (PCA) is first used to
implement dimensionality reduction. Successively Fisher dis-
criminant is adopted for feature extraction, and a Bayesian
classifier with a Gaussian mixture model (GMM) is trained
to carry out classification. The outputs from all the individ-
ual classifiers are combined to give a final label. Experiments
with real EEG signals taken from a BCI indicate the validity
of the proposed random electrode selection (RES) approach.

Index Terms— EEG signal classification, brain-computer
interface (BCI), Fisher discriminant, Gaussian mixture model
(GMM), random electrode selection (RES)

1. INTRODUCTION

The last decade has seen a rapidly increasing interest in the
research of brain-computer interface (BCI) technology, due
to its huge potential for applications, in particular, to provide
a basic communication and control channel between the brain
and the external devices for severely motor-disabled but cog-
nitively intact people [1, 2, 3]. Although there exist a number
of measurements for monitoring brain activities, such as mag-
netoencephalography (MEG) and functional magnetic reso-
nance imaging (fMRI), electroencephalography that records
electrical brain activities from scalp electrodes is deemed to
be the most practical and recipient way for BCI applications.
The reason is that it is non-invasive, relatively inexpensive,
and possesses a high temporal resolution [1]. The classifi-
cation of electroencephalogram (EEG) signals, an important
component in EEG-based BCIs, is the focus of this paper.
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Fisher discriminant is a classic feature extraction approach
for describing multivariate data in the derived Fisher discrim-
inant space [4, 5]. It plays an important role in the classifica-
tion task of BCI research as well [6, 7, 8]. Nevertheless, the
stability of Fisher discriminant is susceptible to the dimen-
sionality of the original feature spaces. High dimensional
feature vectors with relatively few training samples tend to
cause its instability [7, 9]. To figure out this problem, some
countermeasures have been proposed so far in the context of
EEG signal classification. For example, Wang et al. reduce
the dimension of original feature vectors by taking the ab-
solute value average of their eight consecutive elements [7].
Principal component analysis (PCA) [5] for dimensionality
reduction seems a plausible method to obtain robust scatter
matrices for Fisher discriminant, however it may lose impor-
tant discriminative information embedded in small eigenval-
ues. Moreover, there exists a family of electrode selection
methods to carry out dimensionality reduction as well. Usu-
ally they optimize the electrode selection from the physiolog-
ically related locations to remove redundancy and noise [10].
The foregoing strategies for improving Fisher discrimi-

nant are either computationally demanding or lack a guaran-
tee of retaining all the discriminative information. Recently
the successful application of random subspace for classifica-
tion ensembles [9, 11] gives us an inspiration, which con-
structs individual classifiers by sampling features randomly.
Breiman demonstrates that the random subspace method ben-
efits from accurate and diverse individuals, and does not over-
fit with increasing individual classifiers [12]. In this paper, an
ensemble method to address the instability of Fisher discrim-
inant for EEG signal classification, namely, random electrode
selection (RES) is proposed with the effectiveness demon-
strated empirically. It also has the potential to work in the sce-
narios of electrode malfunctions or poor electrode contacts.

2. METHOD

2.1. Data description and preprocessing

The analyzed data are provided by the IDIAP Research Insti-
tute of Switzerland [13, 14]. They are EEG recordings taken
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from normal subjects during three mental imagery tasks. The
mental tasks are imagination of repetitive self-paced left hand
movements (class ω1), imagination of repetitive self-paced
right hand movements (class ω2) and generation of differ-
ent words beginning with the same random letter (class ω3).
Data from the first two subjects (denoted by S1 and S2 re-
spectively) are used. For a given subject, there are four non-
feedback sessions recorded. After spatial filtering and power
spectral density estimation, the raw EEG signals are converted
to 96-dimensional feature vectors with every 12 entries com-
ing from one of eight centro-parietal electrodes. The numbers
of samples in the four sessions for subjects S1 and S2 are re-
spectively 3488/3472/3568/3504, and 3472/3456/3472/3472.
In this paper all the samples are then normalized with respect
to different electrodes. To be specific, each spectral compo-
nent f of electrode e for sample x̃i is divided by the summa-
tion of the spectral components of x̃i on electrode e,

xe
i (f) =

x̃e
i (f)

ΣKe

f=1x̃
e
i (f)

(1)

where xi is the normalized sample, and Ke is the number of
features on electrode e.

2.2. Fisher discriminant for multi-class feature extraction

Fisher discriminant attempts to seek a number of projection
vectors {d∗j}V

j=1 efficient for discriminating between data from
different classes. For a binary classification problem, it ob-
tains a unitary projection vector d∗1 to maximize the ratio of
the between-class scatter matrix Sb and the within-class scat-
ter matrix Sw, that is, d∗1 = arg maxd1

d�

1
Sbd1

d�

1
Swd1

.

For a c-class problem, Sb and Sw have the following forms,
Sb = Σc

i=1ni(mi−m)(mi−m)�, Sw = Σc
i=1Σxk∈ωi

(xk−
mi)(xk −mi)

�, where mi is the mean of ni samples which
belong to class ωi, m is the mean of all samples [5]. The in-
stability of Fisher discriminant mainly originates from the fact
that Sw may be singular in case the ratio of sample number
and sample dimensionality is relatively small. This situation
often occurs for EEG signal classification especially when us-
ing multiple electrodes to record signals. Meanwhile, such a
low ratio is also harmful to get a robust estimation of Sb and
Sw due to the side effect of noise.
Although there are many variants for extending the tra-

ditional Fisher discriminant to the multi-class problem, the
instability problem has not been really resolved. For evalu-
ation purpose, we exploit the multi-class Fisher discriminant
introduced in [4], which is to seek d∗n = arg maxdn

d�

n
Sbdn

d�
n

Swdn

with the orthonormal constraints d�1 dn = d�2 dn = . . . =
d�n−1dn = 0, d�n dn = 1. The number of projection vectors
{d∗j}

V
j=1 is fixed as the maximized possible rank of matrix Sb,

that is V = c−1 if c classes are defined. For a sample x in the
original feature space, its new coordinate y in Fisher discrimi-
nant space can be described as y = [d∗�1 x, d∗�2 x, . . . , d∗�V x]�.

2.3. Bayesian classifiers

Let each class ωi from the finite set of c classes {ω1, ..., ωc}
have prior probability P (ωi) where

∑c

i=1 P (ωi) = 1. A
Bayesian classifier [5] assigns the label of a test sample y in a
Fisher discriminant space according to values of its posterior
probabilities {P (ω1|y), ..., P (ωc|y)},

y ∈ ωj if P (ωj |y) = max
i=1,...,c

P (ωi|y) . (2)

The posterior probability P (ωi|y) can be computed using the
class-conditional probability density p(y|ωi) by Bayes for-
mula: P (ωi|y) = P (ωi)p(y|ωi)

p(y) = P (ωi)p(y|ωi)P
c

i=1
P (ωi)p(y|ωi)

.

The class-conditional probability density p(y|ωi) is herein
modelled as a GMM which is potential to catch subtle infor-
mation for data distributions. Formally, p(y|ωi) is supposed
to be the weighted combination of Ni Gaussian probability
density functions, that is,

p(y|ωi) =

Ni∑

k=1

αk
i G(y|μk

i ,Σk
i ), s.t.,ΣNi

k=1α
k
i = 1, αk

i > 0,

(3)
whereG(y|μk

i ,Σk
i ) is a Gaussian probability density function

with mean μk
i and covariance Σk

i [15]. Here the parameters
{Ni, α

k
i , μk

i ,Σk
i } (k = 1, ..., Ni; i = 1, ..., c) in GMMs are

estimated by the expectation maximization (EM) algorithm
and the minimum message length principle [5, 16].

2.4. RES for EEG signal classification

In Fisher discriminant, it is hard to get a robust estimation for
scatter matrices Sw and Sb when the training set is relatively
small compared to the high dimensionality of feature vectors
or data are badly contaminated by noise. Thus instability hap-
pens, which can be further aggravated if the within-class scat-
ter matrix Sw is singular.
RES intends to conquer this instability. According to the

electrophysiological knowledge, electrodes related to mental
tasks are first enclosed as candidate electrodes. Features be-
longing to the candidate electrodes form the original feature
space. The RES approach samples a number of electrodes
at random from the candidate electrodes. The features from
the selected electrodes make up of a electrode feature sub-
space. PCA is applied to carry out further dimension reduc-
tion whereby the eigenvectors answering for the zero eigen-
values are removed. This can diminish the singularity of ma-
trix Sw and the negative influence of noise to a certain extent.
Thus a somewhat stable Fisher discriminant may be expected
in the lower dimensional electrode feature subspace. Conse-
quently, an individual Bayesian classifier using GMMs is con-
structed in the Fisher discriminant space of the electrode fea-
ture subspace. The electrode selection process runsM times,
and resultantly M individual Bayesian classifiers have been
trained. TheM outcomes are combined to give the final label
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for a test sample x. Define the average posterior probabil-
ity of x belong to class ωi as P (ωi|x) = 1

M

∑M

m=1 P (ωi|ym)
where ym from themth Fisher discriminant space is the trans-
formed coordinate of x in themth electrode selection. Similar
to (2), the label of x is determined as

x ∈ ωj if P (ωj |x) = max
i=1,...,c

P (ωi|x) . (4)

The feasibility of RES is guaranteed by the efficacy of
random subspace and other classification ensemble methods.
It is widely acknowledged that an effective ensemble classifi-
cation system should consist of individuals that are not only
highly accurate, but are diverse as well [12]. In the RES, elec-
trodes are selected from a set of candidate electrodes answer-
ing for the electrophysiological background of the desired
mental tasks, thus the “accurate” requirement is met unless
the recorded EEG signals are of bad quality. The “diverse” is
also satisfied since each selected electrode feature subspace is
distinct from others with a high probability.
Besides, RES can work without difficulty even if technical

artifacts occur, such as electrode malfunctions or poor elec-
trode contacts. These scenarios are likely to take place during
signal recording, particularly for long-term usage of BCIs or
clinical applications. In this case, conventional feature selec-
tion or electrode selection methods would lose their effects
because they often require complicated computation or opti-
mization to seek the best configuration from the retained in-
tact features or electrodes. On the contrary, RES only needs a
simple random sampling from the remaining electrodes after
the erroneous electrodes are detected and removed for con-
sideration. Therefore, RES almost does not delay the signal
recording process, and thus favors long-term applications.

3. EXPERIMENT

3.1. Parameter configuration

The selected electrode number in RES is fixed as 40 ∼ 60%
of the total number of electrodes closely related to the objec-
tive mental tasks, which is an appropriate balance to gener-
ate diverse and accurate individual classifiers. Hence, for the
current problem of mental imagery, each time 3 ∼ 5 elec-
trodes are randomly selected. The ensemble sizeM for RES
is taken as 25. Later we will give a more economical esti-
mation for ensemble size. In addition, two other methods we
term FDRank and FDOptm are designed for comparison.
FDRank: FDRank uses PCA to carry out dimension re-

duction in the original feature space. Merely the eigenvectors
for the sample covariance matrix with zero eigenvalues are
removed. Then Fisher discriminant is used to project the data
into a two-dimensional Fisher discriminant space in which a
Bayesian classifier is constructed. This is the simplest im-
provement of Fisher discriminant to improve stability.
FDOptm: Although FDRank has a dimension reduction

procedure, the retained dimensionality may still be relatively
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Fig. 1. The obtained GMMs for three mental imagery tasks.

high. FDOptm tries to find the optimal dimension judged by
the accuracy of 5-fold cross-validation on training data via
thoroughly covering the possible dimensions. The dimension
range is set as from 90% of the total sample energy to the
rank of the sample covariance matrix. All the training data
are reduced to the optimal dimension by PCA. Then Fisher
discriminant follows and a Bayesian classifier is constructed.

3.2. Empirical results and comparisons

The component number Ni (i = 1, ..., 3) in GMMs for class
ωi is initialized empirically to vary in {1, 2}. Fig. 1 provides
an illustration of the obtained GMMs for data distribution of
subject S1 on recording session 1. The corresponding Fisher
discriminant space is derived by FDOptm. The component
number of GMMs is selected automatically from the training
sets. From this figure, we can also empirically see that the
configuration of each ellipse is very reasonable.
On top of the learned GMMs, FDRank, FDOptm and RES

then respectively construct Bayesian classifiers for classifying
test samples. To evaluate the RES approach sufficiently with
the available data set, different combinations of the training
set and the test set are exploited for classification. The classi-
fication results are given in Table 1. Therein “i(+j)∼k” means
classification using session i (sessions i and j) as the train-
ing set and session k as the test set, and RES3, RES4 and
RES5 respectively denote the RES approach using different
electrode selection number 3, 4 and 5. The classification ac-
curacy is calculated as correct classification number divided
by the total number of samples in the specified test set.
Fig. 2 depicts the curve of accuracies for data set 1∼2 by

RES4 with respect to different ensemble sizes. For other data
sets, analogical tendency is obtained. The convergence of the
generalized performance is thus revealed. Meanwhile, it also
indicates that for electrode selection in our current classifica-
tion task, less times (around 15) than 25 can obtain similar
performance to that obtained by 25 times. This will alleviate
the burden for training and storage requirements in RES.
From Table 1, the robustness of RES is manifested as

RES3, RES4 and RES5 get similar performances. Also we
can see that for subjects S1 and S2, RES and FDOptm signifi-
cantly outperforms FDRank. Besides, the win-loss-tie scores
between RES3, RES4, RES5 and FDOptm for subjects S1 and
S2 are respectively 12-2-0, 11-3-0, 10-4-0. Statistical t-test
shows that there are significant differences between RES3,
RES4 and FDOptm at the 95% confident level. In addition,
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Table 1. The classification accuracies (%) for subject S1 and S2 by using different methods
Data set

Subject Method 1∼2 2∼3 3∼4 1∼3 2∼4 1+2∼3 1+2+3∼4 Mean

FDRank 54.95 63.17 68.41 57.76 65.98 64.57 60.99 62.26
FDOptm 66.39 69.76 69.66 66.82 69.32 71.02 73.12 69.44

S1 RES3 66.13 72.70 71.06 70.46 71.58 72.70 73.34 71.14
RES4 64.31 70.35 70.69 69.23 71.12 71.80 72.77 70.04
RES5 64.03 69.84 70.58 68.16 70.58 71.33 71.83 69.48
FDRank 52.11 50.09 56.74 57.89 51.35 49.19 49.34 52.39
FDOptm 52.11 55.36 56.77 57.89 51.53 53.28 57.00 54.85

S2 RES3 52.75 56.39 61.03 57.75 53.51 58.09 58.84 56.91
RES4 52.37 55.79 61.35 57.86 53.46 57.55 57.86 56.61
RES5 52.58 53.89 60.71 59.10 52.42 54.32 55.07 55.44
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Fig. 2. Accuracies of RES4 with different numbers of indi-
vidual classifiers for data set 1∼2.
FDOptm is infeasible in real applications, since it involves
heavy computation to find the optimal reduced dimension.
The computational complexity of FDOptm is greatly higher
than that of RES. Generally speaking, the computational times
of RES and FDRank are of the same order of magnitude,
while both are significantly lower than that of FDOptm. For
example, the ratio of computational time for FDRank, FDOptm
and RES4 (with selection times 15) for data set 1∼2 of sub-
ject 1 is around 1 : 130 : 5.

4. CONCLUSION

A new classification ensemble approach RES is proposed in
this paper. Through the random selection from electrodes an-
swering for the objective mental tasks, RES effectively over-
comes the instability involved in Fisher discriminant. Its su-
periority over FDRank and FDOptm is manifested empiri-
cally over a mental imagery classification problem. The sim-
plicity characteristic of RES makes it suitable for stemming
the torrent of technical artifacts (for example, electrode mal-
functions or poor electrode contacts), which is very appealing
especially for usage in long-term recordings. In the future,
the issues of weighting electrodes according to their own dis-
criminabilities can be investigated.
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