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ABSTRACT

The noisy component extraction (NoiCE) algorithm is proposed to
blind-extract noisy signals. This is achieved based on a combina-
tion of blind extraction structure and a cascaded nonlinear adaptive
estimation. Although we use the concept of sequential blind extrac-
tion of sources and independent component analysis (ICA), we do
not assume that sources are statistically independent. In fact, we
show that the proposed cascaded nonlinear filter can be used to ex-
tract a signal (a single signal each time) from their noisy mixtures.
Computer simulations confirm the validity and performance of the
proposed algorithm in noisy microsleep events.

Index Terms— Blind source separation, blind source extraction,
adaptive cascaded nonlinear estimation, noisy mixtures

1. INTRODUCTION

Blind Signal Extraction (BSE) [9, 12, 7] is a technique which aims
at extracting source signals sequentially from their mixtures. This
is achieved without the knowledge of the mixing process and the
sources themselves. The importance of using BSE over blind source
separation (BSS) becomes clearer in large scale problem (for exam-
ple, 122 sensors in magnetoencephalographic (MEG) experiments).
However, the main concern about BSE is: the extracted signal (from
the mixtures) would consist of noise. In noisy backgrounds, stan-
dard BSS may not be feasible or could take prohibitively long time.
Thus, it may be more convenient to extract only one or a subset
of signals of interest (with some desired characteristics) rather than
separate simultaneously all the sources (as in blind source separa-
tion [8, 1]). Some work on BSE has already been carried out, but
most of the approaches focus on noise-free problems [9, 12, 7].
In the BSE model, there are n sources s(k) = [s1(k), s2(k), . . . ,

sn(k)]T , which are mixed via an unknown mixing system A, with
added noise; by m sensors we acquire the received mixed signals
x(k) = [x1(k), x2(k), . . . , xm(k)]T , given by

x(k) = A · s(k) + ξ(k), (1)

with [A]i,j = ai,j , i = 1, . . . , m, j = 1, . . . , n, ξ(k) is the noise
vector1. For convenience, we normally assume that the sources are
zero-mean and the elements of ξ(k) are white Gaussian and inde-
pendent of the source signals.

1ξ(k) is derived so that its covariance matrix E{ξ(k)ξT (k′)} = σ(k − k′)Q(k),
Q(k) is anm × m symmetric and positive definite matrix; σ(k) ∈ {0, 1}.
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Fig. 1. A general structure of the blind source extraction (BSE).

For independent sources, Liu et al. [10] proposed to remove the
effect of noise by specially rearranging the cost function; this was
achieved based on an estimate of the variance of the noise. Such a
cost function had the same generic form as that for the noise-free
case, but the method required some prior knowledge of the noise
variance. This way, as the kurtosis of a Gaussian random variable is
zero, the kurtosis of an extracted signal, kt(y1(k)) will be the same
as in the case with zero noise.

It is therefore clear that in order to make BSE applicable to real-
istic situations, that is the case of noisy mixtures, there is a need for
further investigation into both the effects of noise and the unknown
observation noise disturbance after deflation.

To that end, we propose an improvement to the existing BSE al-
gorithms, which helps alleviate problems associated with: a) noisy
extraction, b) noise caused by deflation; and provides solutions for
BSE of instantaneous noisy mixtures, termed Noisy Component Ex-
traction (NoiCE). Based on a rigorous analysis of the normalised
mean square estimation error (MSPE) for a linear estimator based
BSE method for noisy mixtures [10], we propose a novel higher-
order statistical method based on cascaded nonlinear estimation.
Unlike the existing methods for BSE of noisy mixtures, this ap-
proach does not require prior knowledge of the noise variance.

The paper is organised in the following manner. In Section 2,
we introduce to motivation for the blind extraction structure and the
proposed NoiCE learning. In Section 3, we present a description of
the proposed algorithm used based on a one-step cascaded nonlinear
estimator; the algorithmic design of the network is also summarised.
In Section 4, an experimental study of the proposed learning applied
to the estimation of the noisy signals is presented. The paper con-
cludes with some final remarks in Section 5.
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2. NOISY COMPONENT EXTRACTION (NOICE)

2.1. Extraction Procedure

A general structure of the BSE process for extracting one single
source at a time is shown in Fig. 1; there are two principal stages -
extraction and deflation [7]. The original mixtures first undergo the
extraction stage to have one source recovered; after deflation, the ef-
fects of the extracted source are removed from the mixtures. These
new ”deflated” mixtures then undergo the next extraction process to
recover the second source. This process may be repeated to extract
the original source signals one by one, until the last source of interest
is recovered. To prevent the newly extracted source signal from be-
ing extracted again in the next processing unit, we employ cascaded
nonlinear estimator of the mixtures that uses information about this
signal. We then derive a learning rule that deflates the extracted sig-
nal from the mixtures. The approach proposed here applies to both
blind extraction and deflation in noisy environments.

2.2. NoiCE with a Nonlinear Estimator in Noisy Environments

Following the practice from radar and laser research, one convenient
way to deal with the noise would be to employ a source of nonlinear-
ity within the system. We aim to achieve this by using a nonlinear
estimator [4] within the NoiCE structure as shown in Fig. 2, where
the single extracted signal y1(k) = wT

1 · x1(k) is passed through a
nonlinear estimator. A standard extraction process with extracting
vector w1(k) is used in the first step to extract one signal (denoted
by y1(k)) from the mixture. To initially extract one of the sources
from the noisy environment, the input-output relation of the network
are given by:

y1(k) = wT
1 x1(k) =

n∑
j=1

w1jx1j(k) = gT
1 s1(k) + wT

1 ξ1(k) (2)

by xi(k), we will denote the deflated mixtures, after the ith defla-
tion, where x1(k) = x(k).
In the next step, a nonlinear filter with nonlinearity Φ typically a

nonlinear function2 Φ(·), is used to assist the extraction, The use of
this nonlinearity is particularly important to support the extraction
process by eliminating the effects of the remaining noise [4, 1]. The
output of this block can be expressed as

y1(k) = Φ[y1(k)] (3)

where g1 = wT
1 · A. In (3), the output y1(k) is an estimate of the

extracted signal y1(k), e.g., y1 = y1 +sgn(y1)y2
1 or y1= tanh(γy1).

Notice that in modern implementations the hard-limiter function (4)
is usually replaced by a smooth nonlinear function such as the sig-
moid function (5), where the positive scalar γ is used to modify the
shape (slope) of Φ(·). This way, the hard limiter

y1 =
{

y1, if y1 ≥ 0;
0, otherwise.

(4)

is approximated by a hyperbolic tangent function, with a varying
slope γ, given by

Φ[y1] = sgn(y1) ≈ tanh(γy1) =
eγy1 − e−γy1

eγy1 + e−γy1
. (5)

2A sigmoid vector function is a vector valued function Φ: Rn → (0, 1)n with
Φ(y1, y2, . . . , yn) = (Φ(y1), Φ(y2), . . . , Φ(yn)) where Φ is a univariate sigmoid
function.

Clearly, from (4), by changing γ, the nonlinearity can be varied
between a linear device and a hard limiter. The effects of γ → 0 can
be studied by scaling y1 by a constant.

lim
γ2→∞

[y1] = y1 and lim
γ2→0

[y1] = γ
√

π/2sign(y1). (6)

3. CASCADED NONLINEAR ESTIMATION FOR BLIND
EXTRACTION

Previous results [7] had shown that blind extraction would suffer
from the effects of noise, including both the noise from the environ-
ment and noise after deflation. Therefore, in the development of the
adaptive BSE algorithm; unlike the existing approaches based on the
noise removal directly from the cost function, we need to consider
both the effects of noise and the artifacts of extraction and defla-
tion in a most realistic. To overcome this issue, cascaded nonlinear
estimators are proposed in this work. Following the theoretical justi-
fication from [3, 11], we set out to investigate whether the nonlinear
estimation within the BSE structure from Fig. 2 offers advantages in
BSE. The commonly used linear methods which obey the superpo-
sition principle suffer from serious degradation upon the arrival of
samples corrupted with high-amplitude noise. Nonlinear methods,
on the other hand, promise to better exploit the statistical character-
istics of the noise.

3.1. The Derivation of the Learning Algorithm

Let us therefore focus on the cascaded nonlinear structure from Fig-
ure 2. The update of the weight vector wi associated with standard
BSE (shown in equation (2)) can be performed based on the kurtosis
minimization as decreased in [10].
Following the approach from [3, 11], and using (5), together

with its derivative ∂
∂yi

tanh(yi) = sech2(yi) = 2
eyi+e−yi

, we can now
define a cascaded signed observation ỹi

a as

ỹa
i = sgn[sgn(w̃i)ỹi − a] (7)

where a is a real valued scalar (−∞ < a < ∞) and the vector
w̃i=wi. Note that for a ≤ ỹi the output samples have values equal
to unity, and for a > ỹi, these values are equal to -1. Thus, from (7)

ỹa
i =

{
1, for a ≤ ỹi

−1, for a > ỹi
(8)

The ”running weights” [3] estimate of the desired output signal, ỹ1
a,

is achieved via the following operation

D = |w̃i| � sgn(w̃i)ỹi|ni=1,

= |w̃i| � 1
2

∫
sgn[sgn(w̃i)ỹi − a]da|ni=1 (9)

where “�” is the replication operator.
Using this as the principal contributor to the update, and since

S(k) is the output of the weighted median at time k(S(k) = ya(k)),
the simplified algorithm leading to the following recursion referred
to as the ”fact weight adaptive algorithm” [3] is given by:

w1i(k+1) = w1i(k)+μsgn(w1i(k))×sgn[sgn(w1i(k))y1i(k)−S(k)],
(10)

2046



Fig. 2. Structure for noisy component extraction (NoiCE).

for i = 1, 2, . . . , n. This algorithm will be applied in the deflation
procedure.
After the deflation process, the remaining mixtures become

x̂1(k) = x1(k) −
n∑

i=1

w1iy1i(k) , (11)

This completes the derivation of the proposed BSE algorithm for
extracting noisy signals (NoiCE).

4. SIMULATIONS

4.1. Experiment I

To verify the performance of the proposed NoiCE learning, a 3 × 3
mixing matrix A was randomly generated and is given by

A =

⎡
⎣ 0.8521 0.4110 −0.9223

0.3442 −0.9947 −0.4895
−0.1601 −0.5357 −0.1420

⎤
⎦ . (12)

Fig. 3(a) shows the three source signals, denoted by s1 with binary
distribution, s2 sine waveform and s3 Gaussian distribution, used in
simulations. These signals have positive kurtosis (β = 1). The pro-
posed cascaded nonlinear estimator is adopted in this experiment.
Monte Carlo simulations with 500 iterations of independent trials
were performed. This way, the initial estimation errors of the three
signals were respectively {10.0735, 4.0554, 10.0133}, the variance
of the noise in (1) was set to σ2 = 0.1. By applying the proposed
NoiCE algorithm, we expect the signals with the smallest estimation
error to be first extracted, which is the binary distribution (s1) and
the sine waveform (s3). The stepsize μ0 = 0.0007. After the extrac-
tion process, the estimation errors for the proposed NoiCE algorithm
become {−0.0522, 0.0104,−0.0040}.
The waveforms of the sequentially extracted signals by the pro-

posed nonlinear estimator method is given in Fig.3(b). Following
our analysis (which based on the smallest estimation error), the pro-
posed NoiCE learning first extracted s1 with binary distribution, fol-
lowed by s2 a sine waveform and then s3 with Gaussian distribution.
These three extracted signals matched closely the original source
signals.
To further illustrate the qualitative performance of the proposed

approach, scatter plots of the original sources and the recovered out-
put signals are displayed in Fig.3(c). These scatter plots illustrate the
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Fig. 4. Mark type 4 microsleep data: (top) FP1 EEG signal, (middle)
FP2 EEG signal and (bottom) EOG signal.

Extracted Signals
Kurtosis Signal 1 Signal 2 Signal 3

Original Signal 1.0232 1.500 2.9319
Noisy Mixture 2.6887 2.2643 2.1578

MPSE Linear estimator [10] 2.4183 1.2329 1.9569
Proposed NoiCE 1.0844 1.5919 2.6858

Table 1. Kurtosis of the original sources and the kurtosis of the ex-
tracted signals using the proposed NoiCE and the normalised MPSE
linear estimator method [10].

”qualitative” performance and show the degree of independence be-
tween the outputs, where each point on the diagram corresponds to
one data vector. If, instead of the proposed nonlinear estimator, the
standard normalised MSPE [10] approach was used, it was unable
to give satisfactory extraction performance, as shown in Fig.3(c).
In addition, it can be seen that the proposed blind extraction algo-
rithm provides, in general, better kurtosis matching of the source
and output signals (Table I). Conforming with the above results, the
extracted output signals using the proposed method have a closer
match to the original sources, as compared to the normalised MSPE
[10].

4.2. Experiment II

In this experiment we considered EEG data recorded during shirt
lapses of awareness (microsleep) [2, 6, 5]. The task was to extract
the Electro-Oculogram artifact from the useful EEG data. Figure 4
shows a 3s portion of the recorded EEG time series collected from
the electrodes: (top) FP1, (middle) FP2, and (bottom) EOG; all re-
ferred to the left mastoid at mark type 4 (high degree microsleep).
From Fig.4, these records show a large amount of correlation, hence
bandpass filtering could not have been used to separate them. The
proposed blind extraction, on the other hand, separates and extracts
the EOG artifact from all the EEG components. From Fig. 5, ar-
tifact and nonlinearity of the high microsleep signal was isolated
as compared with the ”clean” mark type 0 (tired but awake) data.
The ”corrected” data showed a low level noise and best matched the
mark type 0 (tired but awake) data.
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Fig. 3. Source signals used in simulations: (a) The original source signals, s1 with binary distribution, s2 sine waveform and s3 with
Gaussian distribution; (b) The extracted output signals based on NoiCE, s1 with binary distribution, s2 a sine waveform and s3 with
Gaussian distribution. (c) Scatter plots comparing the independence level of the extracted signals.

Fig. 5. A comparison between—- Extracted signal (Mark type = 4);
- - - Tired but awake signal (Mark type = 0) after BSE.

5. CONCLUSIONS

We have addressed a special class of blind source separation (BSS)
algorithms, namely noisy component extraction (NoiCE), by which
we can recover a single source or a subset of sources each time, in-
stead of recovering all of the sources simultaneously. We have dis-
cussed the neural network model and its associated adaptive learn-
ing rule, and have developed a BSE algorithm for noisy mixtures.
We have studied the BSE problem in noisy environments and pro-
posed a new NoiCE algorithm based on minimisation of cascaded
nonlinear estimation error. Unlike the existing algorithms for noisy
BSE, which remove the effects of noisy directly from the cost func-
tion, this approach does not require the knowledge of noise variance,
or any preprocessing. Simulations have shown that the proposed
algorithm can perform satisfactory extraction of the corresponding
sources from noisy mixtures.
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