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ABSTRACT 

Monitoring cognitive load is important for the prevention of 
faulty errors in task-critical operations, and the development 
of adaptive user interfaces, to maintain productivity and 
efficiency in work performance. Speech, as an objective and 
non-intrusive measure, is a suitable method for monitoring 
cognitive load. Existing approaches for cognitive load 
monitoring are limited in speaker-dependent recognition and 
need manually labeled data. We propose a novel automatic, 
speaker-independent classification approach to monitor, in 
real-time, the person’s cognitive load level by using speech 
features. In this approach, a Gaussian Mixture Model 
(GMM) based classifier is created with unsupervised 
training. Channel and speaker normalization are deployed 
for improving robustness. Different delta techniques are 
investigated for capturing temporal information. And a 
background model is introduced to reduce the impact of 
insufficient training data. The final system achieves 71.1% 
and 77.5% accuracy on two different tasks, each of which 
has three discrete cognitive load levels. This performance 
shows a great potential in real-world applications.

Index Terms – cognitive load, speech classification 

1. INTRODUCTION 

Cognitive load refers to the amount of mental demand 
imposed by a particular task [1], which reflects the pressure 
people experience in completing a task. Since cognitive load 
has been closely associated with the limited capacity of 
working memory and learning [1], it is crucial to maintain 
the load experienced by people within an optimal range to 
achieve the highest productivity. When people are 
overloaded, their ability of learning and performance of 
completing task will be negatively affected [1] resulting in 
faulty errors. Due to a number of factors, such as domain or 
interface expertise, age, mental or physical impediments, 
different people may be affected in different ways when 
performing a same task, therefore experience varied 
cognitive load levels. Considering this variation, monitoring 
the real-time cognitive load experienced by individuals is 

very important for developing adaptive user interfaces, in 
which the content and presentation can be adjusted to reduce 
error risk, and for critical operation environments in which 
an alarm can be triggered in advance.  

A number of methods have been investigated to monitor 
(or measure) cognitive load level in previous research [1], 
including: behavioural methods, such as mouse speed and 
pressure, linguistic and dialogue patterns; physiological 
methods, such as galvanic skin response and heart rate; 
performance methods, such as testing and error rates; and 
subjective (self-report) methods of ranking experienced load 
level on single or multiple rating scales. Among the methods, 
behavioural methods are probably the most suitable for 
practical cognitive load monitoring systems which need 
accurate, non-intrusive, objective and online measures. 

Speech features can be a particularly good choice within 
behavioural methods, since speech data exists in many real-
life tasks (e.g. telephone conversation, voice control) and 
can be easily collected in a non-intrusive and inexpensive 
way. Recent research has discovered some potential features 
relating to cognitive load levels (CL levels), such as  the 
number of sentence fragments and articulation rate [2], and 
tried to recognize CL levels from a number of high level 
features by using Bayesian network [3, 4]. However, these 
existing approaches are limited in speaker-dependent 
recognition and need manually labeled data. In this paper, 
an automatic, real-time, speaker-independent cognitive load 
monitoring system is developed utilizing techniques from 
speech signal processing and classification research, and can 
be easily adapted to varied task scenarios. 

2. KEY TECHNIQUES AND SYSTEM DESIGN 

To simplify the problem, we start from discrete levels 
instead of continuous CL level monitoring. Consequently, 
the monitoring problem can be seen as a classification 
problem, for which a number of speech classification 
techniques are ready for use. Considering the efficiency and 
the amount of data available, a GMM based classifier is 
proposed and the related techniques are investigated. 

2.1. Speech features and temporal information 
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Mel-Frequency Cepstral Coefficients (MFCC) is the de 
facto standard feature in many speech 
recognition/classification tasks, and achieves highly 
appreciable success due to its better representation of human 
auditory response. Prosodic features such as pitch and 
intensity, on the other hand, give out extra information 
related to emotion or intension and have shown a potential 
relationship to the CL levels [5].  

To capture the temporal information of features, three 
different approaches are investigated in this paper:  Delta 
cepstrum, Acceleration (delta-delta) and Shifted Delta 
Cepstra. The Delta coefficient at frame n for cepstral stream 
Ci is calculated as: 
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Acceleration is implemented by repeating Delta 
calculation on pre-calculated Delta coefficients. It provides 
the second order dynamic information of original features.  

By capturing extra long-term feature patterns, Shifted 
Delta Coefficients (SDC) [6] has been reported to be 
superior than acceleration and delta in speech recognition 
tasks. The SDC feature vector at time t is calculated as: 

0( ) ( ( ) ( ))SDC i kF t conc c t iP D c t iP D = →= + + − + −  (2) 
where conc(.) means concatenating operation; D, P, k are 
parameters which are normally chooses to be 7, 1, 3. 

The extra feature values from the above calculations are 
normally concatenated to the original feature vector to form 
a longer and enhanced feature vector containing temporal 
information. 

2.2. Channel and speaker normalization 

The consistency of speech in training and testing data is 
very important for statistical modeling. In a speaker-
independent classification system, two major problems are 
speaker variation and channel mismatch. The latter is 
normally caused by the short-term distortions, linear channel 
effects and other interferences, and can be reduced by 
Cepstral Mean Subtraction (CMS) [7] technique which
removes any fixed frequency response distortion simply by 
subtracting the corresponding time-averaged value over the 
entire speech utterance from each of the cepstral coefficients. 
To normalize the speaker variation, the Feature Warping [8] 
technique is used to map the feature distribution over an 
utterance to a unified distribution (Gaussian distribution in 
case of GMM classifier), thus reduce the variation. The 
warping calculation is applied on each of the feature 
coefficients individually, assuming different feature 
coefficients are independent. In this paper, the mapped value 
of the current feature value m is calculated over a sliding 
time window: 

1
2( )N R
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N

+ −=  (3) 

where ipdf() is the inverse cumulative distribution 
function for normal distribution, N is the size of window, R 

is the ranking of the original value within the current 
window. An example of the signal distribution before and 
after feature warping is shown in Figure 1. 
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Figure 1: The distribution of a feature in a segment 
before (A, B) and after (C, D) warping 

2.3. GMM based classifier and the background model 

Considering its successful application in speech 
classification tasks, a GMM based classifier is proposed in 
this research. In this classifier, each of the CL levels was 
modelled by a GMM. The best matched model gives out the 
classification result during evaluation. According to the 
tasks designed for this research (described in section 3.1), 
the major problem to create an effective GMM classifier is 
the lack of training data. For example in reading task, only 
the answering part can be used for training level models 
because the models trained solely on reading data didn’t 
show any significant difference between levels. As a 
solution, a background model is introduced which is another 
GMM trained on reading data from all levels. And then the 
individual CL level models are adapted from it on the 
limited answering data using the maximum a posteriori
(MAP) estimation technique [9]. Since the background 
model models the basic feature distribution shared by all 
speakers, it can be a good initial distribution for individual 
level models and therefore improves the precise of level 
models when training data is limited. 

Figure 2: Diagram of the proposed monitoring system 
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The structure of the proposed classification system is 
illustrated in Figure 2. Since the evaluation process only 
evolves calculating and comparing likelihood scores, the 
classification (or monitoring) can give out result in real-time. 

3. EXPERIMENTS 

3.1. Task Design 

To examine the hypothesis that speech features may change 
when a speaker experiences different cognitive loads, two 
different task scenarios are designed for producing the 
speech data by completing different tasks which induce 
varied loads. It is assumed the task difficulty is the major 
factor to influence the CL level. The proposed monitoring 
system is also evaluated on these two task scenarios to 
evaluate the performance and robustness. 

3.1.1. Reading and comprehension 
In this scenario, participants are required to read a short 
story out loudly, and then to answer three open ended 
questions about that story at each of the three levels. These 
three levels (Low/L1, Middle/L2, High/L3) contain different 
stories with varied difficulty level and are expected to 
induce different CL levels. The difficulty level of stories is 
measured by Lexile scale [10] – a semantic difficulty and 
syntactic complexity measure scale ranging from 200 to 
1700 Lexiles, corresponding to the reading level expected 
from a first grade student to a graduate student. The stories 
are similar in length and contain general knowledge about 
weather phenomena, household appliances and the functions 
of the human body to avoid expertise being a factor in the 
results. The Lexile Ratings of the stories in L1, L2, and L3 
are 925L, 1200L, and 1350L respectively. 

The open ended questions are: 
- Give a short summary of the story in at least five whole 

sentences.  
- What was the most interesting point in this story? 
- Describe at least two other points highlighted in this 

story.  
Fifteen (7 male and 8 female), random, remunerated, 

native English speaking participants were asked to complete 
the reading and comprehension tasks. 

3.1.2. Stroop test 
The ‘Stroop Test’ was originally developed by John Ridley 
Stroop [11] for the purpose of experimental psychology 
research. Printed cards are prepared for the experiments 
with the names of colors printed with font of an incongruent 
color, that is, a different color than the meaning of the name. 
There are two types of tests: the ‘Reading Color Names’ 
(RCN), in which participants are asked to read out the words 
ignoring the font color; and ‘Naming Colored Words’
(NCW), in which the actual font color of the words has to be 
read out. In his research, a significant delay of task 
completion was noticed in NCW tests compared to RCN 
tests, and was explained as the automation of semantic 

reading interferes with the task therefore participants have to 
put more efforts in to override the meaning of the words to 
read out the actual font color. Later research conducted by 
Edith’s group extended Stroop’s tests to more situations [12], 
such as naming color fields, congruent color words, 
incongruent color words, and combined. Given the nature of 
these tests, they are found to be extremely useful in creating 
situations of different CL loads.  

Six different Stroop tests are designed as three CL levels: 
- Test 1 - all words are written in black. 
- Test 2 - all words are written in congruent color. 
- Test 3 - words are written mixed in congruent and 

incongruent color. 
- Test 4 - words are written in incongruent color. 
- Test 5 - words are written in incongruent color, 

appearing only one at a time. 
- Test 6 - words are written in incongruent color, 

appearing consecutively while previous words staying 
on display. 
RCN test 1 and 2 are used as cognitive load level 1, 

NCW test 3 and 4 as level 2, NCW test 5 and 6 as level 3, 
respectively.  A separate story reading task is added for each 
participant to produce extra data for background model 
training. The set of tests were undertaken by 14, random, 
renumerated native English speaking participants.  

3.2. Evaluation 

A closed-set evaluation was conducted in case of reading 
and comprehension task, which means all 15 speakers 
appeared in evaluation data already existed in training data. 
For each level of the task, the reading data was collected for 
background training purpose, while the first two 
comprehension answers were used for adapting the 
corresponding level model and the third answer was used 
for evaluating the system. In average, the duration of story 
reading is around 90 seconds and single answer is around 30 
seconds. Varied system configurations with different speech 
features, feature enhancement and normalization algorithms 
were evaluated. The number of mixtures in GMM is 256, 
since higher mixture numbers actually hurt due to lack of 
training data. The performances are shown in Table 1. 

Table 1: The closed-set correction rates in various 
system configurations (Reading task) 

System Configuration Corr. %
MFCC 52.2% 
MFCC+Prosodic (Concatenated) 59.3% 
MFCC+Prosodic, Acceleration 64.4% 
MFCC+Prosodic, SDC 65.7% 
MFCC+Prosodic, SDC, Channel & 
speaker normalization 

71.1%

MFCC+Prosodic, SDC, Channel & speaker 
normalization, without background model 

51.1% 

It is clear that prosodic features, SDC, channel & 
speaker normalization all significantly improve the 
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classification accuracy. The last configuration shows that 
the performance dramatically dropped if the level models 
are trained from corresponding reading and answering data 
without background model. Overall, the best performance is 
achieved at 71.1% in accuracy. 

To investigate the system robustness and consistency on 
a totally different task domain, the best performed system in 
reading task is evaluated on the Stroop test data again.  

A closed-set evaluation is conducted firstly, which was 
similar to the reading and comprehension task. For each one 
of the 14 participants, the reading data is used for training 
the background model while the Stroop test data is used for 
adapting the level models (half sets) and evaluation ( the 
other half sets). The duration of reading is around 90 
seconds and each test lasts around 30 seconds (the higher 
level is slightly longer than the lower one).  

To investigate the performance on unknown speakers, 
another open-set evaluation is conducted in a ‘leave-one-
out’ fashion. In each cycle of evaluation, a classification 
model is trained on the data from 13 participants and then 
the left one is used for evaluation. The average accuracy is 
given out as the open-set performance. 

Table 2: The closed-set and open-set correction rates 
(Stroop test task) 

System Configuration Corr. %
MFCC, Prosodic, Acceleration, Channel 
& speaker normalization  

77.5% 
(closed-set)

MFCC, Prosodic, Acceleration, Channel & 
speaker normalization  

58.5% 
(open-set)

It is clear that the same classification system achieves a 
comparable (even higher) performance in a different task 
scenario. It confirms the robustness and consistency of the 
system. However, the performance quickly drops on 
unknown speakers, which means the speaker specific 
characteristics need to be well modeled in advance.

Table 3: Confusion matrix for closed-set stroop test 

Test results
L1 L2 L3

L1 12 2 0
L2 1 11 2Test 

samples L3 0 4 8
It can be seen from Table 3 that in all incorrectly 

classified instances, most utterances are misclassified into 
the next adjacent cognitive load level. 

Compared to recent research [4] which speaker-
dependently classified two cognitive load levels (high and 
low) in a controlled experiment with manually labeled 
speech features, the proposed system achieves significantly 
higher accuracy in much more restricted task settings 
without any manual interference. 

4. CONCLUSION 

Speech indices are some of the most promising measures for 
cognitive load monitoring, considering the speech features 
analysed are objective, can be collected in a non-intrusive 
way, and in many cases are already collected for 
communication or interaction purposes and is widely in use 
in many scenarios. By transforming the monitoring problem 
to a speech classification problem through designing tasks 
with discrete difficulty levels, a speech classification based 
cognitive load monitoring system is described in this paper. 
A GMM classifier based approach is proposed and several 
key techniques are investigated. The best-performing 
configuration utilized Shifted Delta Coefficients, channel 
and speaker normalization, and background model. 
Compared to existing cognitive load analysis methods, the 
proposed system introduces many advantages including: 
- Automatic cognitive load monitoring in real-time; 
- Unsupervised model training, making it easy to adapt to 

new scenarios without manual labelling or analysis;
- Robust for speaker-independent monitoring; 

The final system achieved 71.1% and 77.5% 
classification accuracy in Reading and Stroop test 
experiments respectively, showing a great potential in real-
world applications, e.g. monitoring the CL load experienced 
by the operators in traffic control, or by the pilots during 
flight simulation, in real-time.  
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