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ABSTRACT

This paper describes a sound source detection approach based on 
elaborate noise-modeling techniques for audio indexing. For 
accurate detection, we devised two methods to generate multiple-
noise models through clustering techniques. One method is based 
on frame-wise data similarity, and the other is based on noise 
source similarity. The former method employs K-means clustering 
and a smoothing technique to avoid inaccurate segmentation. The 
latter method involves noise modeling based on a tree data 
structure generated by the progressive merging of noise clusters. 
The classification experiments show that by using these proposed 
methods, audio sources can be detected with better accuracy than 
that achieved by a conventional method. When four noise models 
generated by the latter method were used, the noise detection 
performance increased by 3.9% for the periods in which the sound 
sources did not overlap. With regard to the experiments for an 
audio stream that included overlapped segments, the noise 
detection performance increased by 1.2% without a decrease in the 
speech detection performance. 

Index Terms— Clustering, Acoustic segmentation

1. INTRODUCTION 

In recent years, the amount of new content requiring immediate 
access via the Internet has significantly increased. In comparison 
with searching for text content, effectively searching for desired 
multimedia content is very difficult. Useful descriptions of 
multimedia content (referred to as metadata) are required for 
effective searching. In general, such descriptions are manually 
transcribed from verbal and nonverbal information included in the 
content. Unfortunately, creating such descriptions is highly time-
consuming and very expensive. Speech recognition and audio 
source detection are expected to be solutions to these problems. 
State-of-the-art speech recognition technology can recognize clear 
speech with high accuracy; however, noise or music from other 
sound sources, which commonly appear in most content, 
significantly hamper the recognition performance. 

A number of studies have been conducted on multimedia 
content indexing for information retrieval [1-4]. In this regard, we 
have also studied an efficient strategy for indexing broadcast news
[5]. The proposed broadcast-news indexing technique should be 
able to detect utterance boundaries with sufficient precision so as 
to enable better speech recognition [6] and locate significant 
acoustic points for topic segmentation. 

Therefore, accurate audio source detection (segmentation) is 
required for audio content indexing. Voice activity detection 
(VAD), which delimits the beginning and end of the speech 
segments in audio content, has been widely studied for robust 

speech recognition [7], and this technology is applicable to 
content indexing. Noise detection is also an important research 
topic for indexing; however, it is very difficult to detect the 
various types of noise sources. This difficulty arises from the fact 
that the number of noise sources is large and that the acoustic 
features of each type of noise are very different. Furthermore, 
collecting a sufficient amount of data for each type of noise 
source for noise modeling is very difficult. 

We have studied an audio source detection approach based on a 
stochastic method to detect speech, noise, music, and silence. Our 
approach uses not only conventional surface acoustic features 
such as signal energy and pitch frequency [8, 9] but also new 
features that are based on spectral correlation for more accurate 
detection [10]. These features measure spectral stability, white 
noise similarity, and spectral shape. The experiment with the 
broadcast news demonstrated that these feature parameters made it 
possible to capture the audio source more accurately. However, 
the experiment also showed that the detection performance for 
noise sources was still lower than that for the other sound sources. 
Devising a model to increase the detection performance for a 
noise source would require that the detection performance for 
other sound sources not be decreased.

Addressing the aforementioned issues, this paper proposes an 
audio source detection approach using multiple noise models for 
more accurate sound-source segmentation. We devised two 
methods for generating the multiple noise models. The first 
method was based on the similarity criterion among frame-wise 
noise data. In this method, K-means clustering was used to classify 
a noise-tagged data set into a number of noise clusters fixed a
priori, and a smoothing technique was used to modify the 
clustering results. The clustering used a Mahalanobis metric to 
cope with the diversity of noise distribution, and the smoothing 
prevented the inaccurate segmentation of the data into very short 
noise periods. The second method was based on the noise-cluster 
similarity criterion. This method used a tree data structure made by 
the progressive merging of each type of noise data (hierarchical 
clustering), in which a Bhattacharyya metric was used. The results 
of our detection experiments that used Japanese broadcast news 

Figure 1. Sound source segmentation procedure 
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segments showed that both the proposed methods achieved higher 
noise recall rates than a conventional method using the single noise 
model. The latter method achieved the highest performance by 
increasing the noise detection rate considerably and the weighted 
average for the detection performances of all sound sources also 
increased. 

2. SOUND SOURCE SEGMENTATION 

2.1. Acoustic feature parameters 

For acoustic source detection, we use seven acoustic features: the 
four conventional features of signal energy, pitch frequency, peak-
frequency centroid, and peak-frequency bandwidth, and three 
parameters based on spectral cross-correlation: temporal stability, 
white noise similarity, and spectral shape [10]. 

2.2. Sound source segmentation procedure 
In broadcast news preprocessing, the sound source segmentation 
procedure was carried out prior to speech recognition, and the 
sound content of the news was divided into four types of segments: 
speech, music, noise, and silence. Speech recognition and sound 
source segmentation results were used for indexing. The 
segmentation procedure is composed of an acoustic source 
detection part and a smoothing part (Figure 1). In the detection part, 
time-frame-wise detection results and the likelihood for each 
feature parameter in each frame are obtained. The likelihood is 
calculated by using the acoustic models of each sound source.  

The smoothing part uses a merge method that consists of two 
processing steps. The first step (Step 1) takes into account the total 
likelihood of all feature parameters and each feature’s likelihood 
for more elaborate smoothing. This technique is used because total 
likelihood is the most important factor in detecting boundaries; 
however, some sound source characteristics appear only with 
specific parameters, and the total likelihood frequently ignores 
these phenomena. The second step (Step 2) uses a conventional 
technique that smoothes the results of the first step using a longer 
window to avoid the inaccurate detection of very short periods. 
The details of segment smoothing are described elsewhere in the 
literature [10]. 
2.3. Audio source tagging
We prepared a tagged database for 28 broadcast news programs to 
evaluate the performance of audio source segmentation. These data 
comprised seven programs in each of the following categories—5, 
10, 20, and 30 min segments. The data were manually tagged 
based on the beginning and ending times of speech, music, and 
noises. Some tagged periods overlapped, such as an interview in a 
crowd, an anchor’s speech with background music, and so on. 
Non-tagged periods were the silent parts. The label definition of 
each audio source type was as follows:

Speech: Speech of an anchor, reporter, interviewee, and all 
other transcribable utterances. The speech periods included 
short pauses.
Music: Music and jingles.
Noise: Sounds of crowds, cheers, traffic noise, and so on. 
Background voices, such as murmurs or shouts, were tagged 
as noise. Low noises, such as lip and paper noises, were also 
tagged as noise. Around thirty types of noise sources were 
separately tagged, and two or more types of noise-tags 
overlapped in many periods. 

We investigated the amount ratios of non-overlapped (single-
tagged) periods among different sources in our news content. 
Speech, noise, silence, and music segments accounted for 58.3%, 
18.9%, 14.5%, and 8.3%, respectively. These results indicated that 
accurate detection is required for not only the speech segments but 
also the noise segments. 

The sampling frequency of the audio data was 44.1 kHz. Every 
23 ms, acoustic feature parameters were computed using a 46-ms 
Hamming window. The acoustic model for each sound source 
(speech, noise, music, or silence) was trained using single tagged 
periods and silence periods. Overlapped periods among the noise 
sources were only used for evaluation. The acoustic GMM 
(Gaussian mixture model) with a two-mixture Gaussian 
distribution was used for each sound source, and the mean, 
variance, and weighted value for each distribution were estimated 
using an EM (Expectation Maximization) algorithm. 

 3. ACOUSTIC NOISE MODELING 

We developed two generation methods of the multiple noise 
models for more accurate detection: Methods I and II. Method I 
was based on noise frame-data similarity, and Method II was based 
on noise-source similarity. Method II required a more detailed 
noise tagging of the training data than Method I.

3.1. Modeling based on the similarity among noise data 
(Method I)

Figure 2 provides an overview of the model generation process.
This method employed K-means clustering using all the frame-
wise data in the noise segments. The frame-wise data set was 
partitioned into K clusters. The Mahalanobis metric was used to 
calculate the distance between each frame-wise data and the 
distribution of acoustic parameters of each subset. After the 
clustering was completed, a smoothing technique was applied to 
account for the time continuity of the noise sources. This technique 
used a time window to move the included cluster of unrealistic 
short-time data-sequences into the same cluster preceding or 
trailing the data sequence in the time alignment to which it 
belonged. This procedure was the same as Step 2 described in 
Section 2.2. The noise data subset in each obtained cluster was 
used as training data for each noise model. 
3.2. Modeling based on the similarity among noise sources 
(Method II)

Figure 2. Modeling method based on noise data similarity 
(Method I) 
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Bhattacharyya metric calculated the distance by using the 
parameter distribution of each cluster. A single Gaussian model for 
each type of noise (cluster) was used to calculate the distance. The 
merging was progressively repeated until the desired number of 
noise clusters was attained. There were 32 types of noise sources 
in our database, and clustering was performed on 13 types of major 
noise sources that contained a larger number of samples. With 
regard to each noise cluster of other minor noise sources, the 
distance between each cluster (generated by merging) and each 
minor source was calculated. The noise cluster with the smallest 
distance was regarded as the belonging cluster of each minor noise 
source (3-b). In the second process, each noise-cluster model was 
generated using a data set of noise sources corresponding to each 
node of the dendrogram (3-c).

4. EVALUATION EXPERIMENTS  

Our detection test was conducted using the 28 broadcast news 
programs. We performed a leave-one-out cross validation on these 
data. The overlapped periods among the different sound sources 
were not evaluated for the experiments in Sections 4.1, 4.2, and 4.3, 
where the evaluation data amounted to around 402k samples. In 
Section 4.4, both overlapped and non-overlapped segments 
(around 686k samples) were evaluated. 
4.1. Detection accuracy of the baseline 
A preliminary detection test was conducted to evaluate our 
baseline system using a single model of noise. The detection rate 
for each sound source is shown in Table 1. The average detection 

rate weighted with the data amount for each sound source is 
indicated as “Average.” This table shows that the F-measure of 
noise detection is far lower than that of the other sources.

(3-a) Hierarchical clustering 

4.2. Experiments using K-means Clustering (Method I) 
The detection rates using multiple noise models generated without 
smoothing ((2-a) in Figure 2) and with smoothing (2-b) are shown 
in Tables 2 and 3, respectively. By comparing the data of Table 1 
with that of Table 3, it was observed that the detection using the 
two noise models generated by Method I increased the F-measures 
for both the noise and the average source detection by 2.7% and 
0.8%, respectively. This result indicates that the proposed multiple 
noise modeling can increase the detection performance. However, 
the performance when the three noise models are used is lower 
than that of the baseline system. Devising a method to determine 
the number of noise models required to achieve sufficient 
detection performance is a problem for future investigation. Tables 
2 and 3 show that smoothing always achieves a slight 
improvement.

4.3. Experiments using noise models based on source similarity 
(Method II) 
Two to five noise-cluster models were generated in our 
experiments. While we performed a leave-one-out cross-validation, 
the same dendrogram was used for the training of the noise-cluster 
models. All the models for the other sources are the same as the 
baseline models. The detection results are shown in Table 4. The 
recall rate of noise detection increased with the increase in the 
number of noise-cluster models. On comparing the data in Tables 1 
and 4, we observed that the proposed noise-cluster models 
constantly achieved higher F-measure values with regard to noise 
source detection and all source detection than the single noise 
model. The noise and average source detection rates using four 
noise-cluster models, which showed the highest performance, 
increased by 3.9% and 0.9%, respectively. This comparison also 

Table 1. Audio source detection rates using a single model of 
noise [%] (Baseline) 

Source Recall Precision F-measure 

Speech 95.3 91.7 93.5
Music 77.9 71.7 74.8
Silence 81.4 69.6 75.5
Noise 56.7 79.3 68.0

Average 84.5 84.5 84.5

Table 2. Audio source detection rates[%] (Method I,  
Mahalanobis metric, without smoothing) 

No. of noise 
models Source Recall Precision F-

measure

Noise 63.4 77.1 70.3
Two

Average 85.4 85.0 85.2
Noise 69.1 65.7 67.4

Three Average 83.5 83.4 83.4

Table 3. Audio source detection rates [%] (Method I, 
Mahalanobis metric, with smoothing) 

No. of noise 
models Source Recall Precision F-

measure

Speech 96.1 91.4 93.7

Music 78.9 72.4 75.6

Silence 72.7 78.9 75.8

Noise 65.3 76.0 70.7
Two

Average 85.5 85.1 85.3
Noise 70.1 65.7 67.9

Three Average 83.6 83.6 83.6
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showed that the F-measure values of both noise detection and 
music detection increased. Furthermore, there was no significant 
decrease in the F-measure values of speech and silence detection. 
These results indicate that the proposed noise-cluster modeling 
based on noise-source clustering is effective in audio source 
detection.
4.4. Detection experiments including overlapped segments 
Finally, we conducted detection experiments on all data including 
the overlapped periods among two or three sound sources. The 
experiments were performed from two viewpoints: speech 
detection and noise detection. From the viewpoint of speech 
detection, only speech segments accounted for 31.4%, and 
overlapped segments of speech and other sources accounted for 
40.2% in the evaluation data. The baseline method, Method I (two 
noise models, Mahalanobis metric, smoothing), and Method II 
(four noise models, Bhattacharyya metric) were evaluated. The 
speech detection performance is shown in Table 5. It is shown that 
the F-measure values using Methods I and II increased by slightly 
on employing the multiple noise models. 

From the viewpoint of noise detection, experiments using the 
previous three methods were performed. Only noise segments 
accounted for 11.1%, and overlapped segments of noises and other 
sources accounted for 32.7%. The noise detection performance is 
also shown in Table 5. Our detection approach selected one sound 
source that achieved the highest likelihood. The number of 
anchors’ or reporters’ speech segments mixed with the background 
noises in our news content was large to the extent that the noise 
recall rates were low. Almost all these segments were detected as 
speech. However, using multiple noise models, the F-measure of 
noise detection was increased by 1.2% without a decrease in the 
performance of speech detection. These experiments also 
demonstrate the effectiveness of multiple noise models for audio 
source detection. 

5. CONCLUSIONS 

This paper described the sound source segmentation approach 
using multiple noise models for accurate detection. The noise 
models were generated by using clustering techniques applied to a 

noise-tagged acoustic data set. We devised two generation 
methods: one was based on frame-wise noise data similarity 
(Method I), and the other was based on noise cluster similarity 
(Method II). Classification experiments showed that by using these 
proposed methods, audio sources could be detected with greater 
accuracy than that achieved by a conventional method (baseline) 
using a single noise model. A detection approach using the latter 
method consistently achieved the highest performance among the 
conventional method and the two proposed methods. 

Our proposed method (Method II) requires a significant amount 
of precise noise-tagging data, and determining the quantity of 
noise-tagged data required to achieve sufficient detection 
performance for indexing is a problem that requires future research. 
The detection of multiple sound sources for overlapped sound 
segments also needs to be tackled in the future. 
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No. of 
models Source Recall

F-
Precision measure 

Noise 64.9 74.4 69.7
Two

Average 85.3 84.8 85.1

Noise 67.2 75.7 71.4
Three

Average 85.7 85.2 85.4

Speech 96.4 90.8 93.6

Music 74.7 78.8 76.8

Silence 71.0 79.7 75.3

Noise 68.8 75.0 71.9
  Four 

Average 85.7 85.2 85.4

Noise 74.7 67.5 71.1
Five

Average 84.8 85.0 84.9

Table 5.  Speech and noise detection results for entire 
broadcast news test data [%] 

Source
(ratio) Source Recall Precision

F-
measure 

Baseline 90.3 95.5 92.9
Speech Method I 91.0 95.3 93.1
(71.6%) Method II 91.6 95.0 93.3

Baseline 20.5 80.6 50.5
Noise Method I 22.9 79.3 51.1

(43.8%) Method II 24.4 79.0 51.7
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