
MUSIC PREFERENCE LEARNINGWITH PARTIAL INFORMATION

Yvonne Moh, Peter Orbanz and Joachim M. Buhmann

Institute of Computational Science
ETH Zurich

ABSTRACT
We consider the problem of online learning in a changing environ-
ment under sparse user feedback. Specifically, we address the clas-
sification of music types according to a user’s preferences for a hear-
ing aid application. The classifier, operating under limited compu-
tational resources, must be capable of adjusting to types of data not
represented in the training set, and to changing user demands. The
user provides feedback only occasionally, prompting the classifier to
change its state. We propose an online learning algorithm capable of
incorporating information from unlabeled data by a semi-supervised
strategy, and demonstrate that the use of unlabeled examples sig-
nificantly improves classification performance if the ratio of labeled
points is small.

Index Terms— Online Learning, Semi-Supervised Learning,
Music Classification

1. INTRODUCTION

Sound classification in changing acoustic environments poses a chal-
lenging statistics or machine learning problem that requires sophisti-
cated online learning strategies. We address the sound classification
problem in the context of a hearing aid application. The long-term
goal is to design “smart” hearing aids, which incorporate an adap-
tive amplification unit and an environment sensitive controller. The
controller changes the amplification program according to the cur-
rent properties of the input data and user preferences. A number of
authors have considered application of machine learning algorithms
to classify sounds for hearing aids [1], but classifiers are usually as-
sumed to be factory-trained. An emerging technology is the incor-
poration of feedback provided by the user. We consider a sub-task of
such problems, the classification of music [2] into two classes (such
as like-dislike) according to user preference. Algorithms should sat-
isfy a number of requirements:
1. Online adaptation: The classifier may come with a factory
setting, but has to adapt to the preferences of an individual
user, preference changes and new types of music.

2. Sparse feedback: A user cannot be expected to provide a con-
stant stream of labels.

3. Passivity: The user can provide feedback to express discon-
tent with current performance. Hence, unless at least some
feedback is received, the classifier should remain unchanged.

4. Efficiency: Feature extraction, training and data classification
have to be performed online by a portable device.

To address the adaptation and online problems, we propose a
classification algorithm based on additive expert ensembles [3]. Pre-
dictions of a fixed number of classifiers are combined by weighted
majority. The weights are updated at each iteration, such that well-
performing classifiers make large contributions. To cope with the

sparse feedback problem, we show how the online learning al-
gorithm can be combined with a label propagation algorithm for
semi-supervised learning [4]. Music data are well-suited for semi-
supervised methods, which attempt to improve classification perfor-
mance by incorporating unlabeled data into the training process. The
data distribution has to fulfill regularity assumptions for a successful
transfer of label information from labeled to unlabeled points which
holds for music data with similar types of instrumentation. Training
a classifier to separate preferred from non-preferred classes results
in a preference structure of considerably finer resolution than the
common genre classifications. Experimental results show that the
proposed classifier meets the requirements: It can adjust to both
new music and changes in preference. Moreover, incorporating un-
labeled data by label propagation significantly improves prediction
performance when labels are sparse.

2. BACKGROUND

Online Learning. Most supervised learning algorithms operate un-
der a batch assumption: A complete, static set of training data is
assumed to be available prior to prediction. Additionally, at least
for theoretical analysis, training data is assumed to be i.i.d., condi-
tional on the class. Online learning [5] generalizes this scenario by
assuming data points to be available one at a time, with each obser-
vation serving first as test, and then as training point. For a new data
value, a prediction is made. After prediction, a label is obtained,
and the observation is included in the training set. These methods
only assume that the complete data sequence is generated by the
same instance of the generative process – if the process is restarted,
the classifier has to be trained anew. The data is not required to be
i.i.d. On the theoretical side, well-known concentration-of-measure
bounds of standard supervised learning are replaced by guarantees
on the algorithm’s performance relative to an optimal adversary, op-
erating under identical conditions. In an i.i.d. batch scenario, on-
line learning algorithms must be expected to perform worse than a
well-chosen batch learner, but they are capable of dealing with both
incrementally available data and data distributions that change over
time.
Semi-supervised learning. In semi-supervised learning [4], the sys-
tem is presented with both labeled data, denoted XL, and unlabeled
data XU . The unlabeled data can provide valuable information for
the training process. The risk (expected error) of a classifier in a
given region of feature space is proportional to the local data density
(under the commonly used, spatially uniform loss functions). To
achieve low overall risk, a classifier should be most accurate in re-
gions with high data density. Class density estimates obtained from
unlabeled data can be used to inform training algorithms on where to
focus. Unlabeled data is commonly exploited in either of two ways:
Directly, e.g. by nonparametric density estimates used for risk esti-
mation, or indirectly, by transferring labels from labeled to unlabeled

20211-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

data. Both approaches are based on the notion that points sufficiently
“close” to each other are likely to belong to the same class, which
implies regularity assumptions on the class distributions: One is that
the individual class densities are sufficiently smooth. The other is
that classes are well-separated, that is, the density in overlap regions
is small (and hence has small risk contribution). If these are not
satisfied, unlabeled data should be used with care, as it may be detri-
mental to system performance.

3. ONLINE LEARNINGWITH RANDOM PARTIAL
INFORMATION

The learning problem described in the introduction is formalized as
follows: We start with a baseline classifier (factory setting). New
data values xt (sound features) are provided sequentially. Some of
these observations are labeled by the user as yt ∈ {−1, +1}. The
feedback label yt is assumed to be available between observations
xt and xt+1. If no feedback is provided, then yt = 0. Changes in
the input data distribution may occur, representing two cases:

• New concept: Data with a distribution not previously used in
training is introduced.

• Concept change: Labels are contradictory to previous ones.
The online aspect of the learning problem is addressed by

means of an additive expert ensemble [3]. The overall classifier
is a weighted ensemble of up to Kmax experts (component classi-
fiers), denoted ηt,k for time step t and component k. The experts
are combined as a linear combination with non-negative weights.
Given a new, labeled observation (xt+1, yt+1), the algorithm ad-
justs the classifier weights according to current error rates of the
experts. Components performing well on the current data set receive
large weights. Additionally, new experts are introduced, and poor
performing experts are discarded to bound the total number Kt of
components byKmax. As the application scenario requires a bounded
memory footprint, previously observed data cannot be stored indefi-
nitely. We therefore window the learning algorithm, that is, updates
in each round are performed on a moving window of constant size.
Knowledge obtained from observations in previous rounds is stored
only implicitly in the state of the classifier, until new, contradictory
information votes against it.

Standard online learning algorithms adapt the classifier after
each sample. We assume that feedback is provided only to change
the state of the classifier. While the system is performing to the
user’s satisfaction, no feedback should be required. The learning
algorithm therefore incorporates a passive update scheme: If no
feedback is received, the classifier remains unchanged. The learning
algorithm only acts if the current data point xt is labeled by the user.
In this case, observations in the current window up to xt are used to
change the classifier.

To integrate unlabeled data into the learning process, the online
learning algorithm is combined with a semi-supervised approach.
The method we employ is a graph-based approach for label trans-
fer, a choice motivated in particular by the window-based online
method. Since the window size limits the amount of data available at
once, direct density estimation is not applicable. Graph-based meth-
ods are known for good performance on reasonably regular data.
Their principal drawback, quadratic scaling with the number of ob-
servations, is eliminated by the constant window size. The particu-
lar method used here is learning with local and global consistency
(LLGC) [6]. Data points are regarded as nodes of a fully connected
graph. Edges are encode pairwise similarities (exponential of the

negative Euclidean distance). In large-sample scenarios, the compu-
tational burden for fully connected graphs is often prohibitive, but in
combination with the (windowed) online algorithm, the graph size is
constantly bounded. LLGC spreads label information from labeled
to unlabeled points by a discrete diffusion process along the graph
edges. The diffusion operator in Euclidean space is discretized ac-
cording to the graph’s notion of distance by the normalized graph
Laplacian L. The latter is computed from the graph’s affinity matrix
W and diagonal degree matrix D. The entries of W are pairwise
similarities, andD is computed asDii :=

∑
i Wij . The normalized

graph Laplacian is then defined as L := D−
1
2 WD−

1
2 .

For each sample xt, the algorithm executes a prediction step,
then possibly obtains a label either as user feedback or by LLGC,
and finally executes a learning step. It takes three scalar input pa-
rameters: A trade-off parameter α ∈ [0, 1) controls how rapidly
label information is transferred along the edges during the propaga-
tion step. For the learning step, β ∈ [0, 1] and γ ∈ R+ control
the decrease of expert weights and the coefficients of new experts,
respectively. The prediction step for xt is
1. Get expert predictions ηt,1, ..., ηt,Nt ∈ {−1, +1}.
2. Output prediction: ŷt = arg maxc∈Y

∑Nt
i=1 wt,iI[c = ηt,i]

Learning step (only if yt �= 0: The algorithm first propagates labels
to unlabeled points, and then updates the classifier ensemble. The
graph Laplacian Lt is updated for current window index t, for which
the corresponding labels are Yt = (yt−τ+1, ..., yt)

′.
1. Propagation:

(a) Initialize estimate vector as Ŷ
(0)

t = Yt

(b) Iterate Ŷ
(j+1)

t = αLtŶ
(j)

t + (1− α)Ŷ
(0)

t

(c) Assign each xi the label given by sign(ŷfinali)

2. Learning:

(a) Update expert weights: wt+1,i = wt,iβ
[yt �=ηt,i]

(b) If ŷt �= yt, then add a new expert Nt+1 (and elimi-
nate expert with lowest weight), where the new expert
is trained on the current window of data: wt+1,Nt+1 =

γ
∑Nt

i=1 wt,i

(c) Update each expert on example xt,yt

Due to the limited window size, LLGC is efficient, and run until
equilibration. The first step interpolates the label of each unlabeled
point from all other nodes. Due to similarity-weighted edges, only
points close in feature space have a significant effect. Further steps
correspond to longer-range correlations, i.e. affecting nodes over
paths of length 2, 3 etc. Allowing the graph to equilibrate there-
fore improves the quality of results for uneven distribution of labels
in feature space. Once the propagation step terminates, class assign-
ments for the unlabeled input points are determined by the polarity
of their accumulated mass. The resulting hypothesized labels are
presented to the classifier ensemble as “true” labels.

4. EXPERIMENTS

For evaluation, we built a music database of 2000 files. The bulk
of the database are “classical music”: opera (Händel, Mozart, Verdi
and Wagner), orchestral music (Beethoven, Haydn, Mahler, Mozart,
Shostakovitch) and chamber music (piano, violin sonatas, and string
quartets). A small set of pop music was also included to serve as
“dissimilar” music.

2022

Fig. 1. Visualization of data onto two-dimensional space using
Fisher LDA. We observe substructures in the data and smooth transi-
tions, e.g. from piano to piano concertos (pnz) to symphonies (s:*).
The categories pop, opera (o:*) and chamber music are identifiable.

Features are computed from 20480 Hz mono channel raw
sources. We compute means of 12 MFCC components [7] and
their first derivatives, as well as means and variances of zero cross-
ing, spectral center of gravity, spectral rolloff, and spectral flux.
In total we obtain a 32-dimensional feature vector per file. Fig. 1
shows a 2-D Fisher linear discriminant analysis (LDA) projection of
features averaged over each song or track (i.e. one point per track
in the plot). Since the current study focuses on the classification
algorithm, we do not consider higher-level features [8].

Results reported here use signatures of complete songs. A real-
world application would, of course, have to use partial signatures,
such that the system can react to new music without long delays.
Reference experiments with a static classifier show that between 20
and 60 seconds of music are required to obtain a reliable classifica-
tion for the current features. Strategies for allowing the classifier to
act early are beyond the scope of this article; cf Sec. 5 for a brief
discussion.

4.1. Classifier Setting

The additive expert is based on an ensemble of simple component
classifiers. Two types components were used in the experiments:
A least mean-squared error (LSE) classifier, and a full covariance
Gaussian model (GM). The decision surfaces of the individual com-
ponents are hyperplanes in the LSE case, and quadratic hypersur-
faces for the GM. (Using a Gaussian mixture instead of an individual
Gaussian for each class proved not to be useful in preliminary exper-
iments.) The two principal differences between the two classifiers
are the fact that the GM constitutes a generative model, whereas the
LSE model does not, and that the GM is more powerful. The set
of hyperplanes expressible in terms of LSE is included in the GM
as a special case. Higher expressive power comes at the price of
higher model complexity (in d-dimensional space, the GM estimates
2 ∗ (d + d(d+1)

2
) parameters, compared to d + 1 for the LSE).

A baseline model is first learned on an initial set of data. During
the evaluation phase, the remaining data is presented to the classi-
fier sequentially. When no labels are provided, the classifier does
not update, such that values reported for 0% shows the performance
of a static baseline classifier. When all labels are provided, we ob-
tain the conventional, fully supervised online learning scenario. For

Fig. 2. Cumulative Errors on learning concept changes versus ratio
(percentage) of available labels, shown for LSE (left) and Gaussian
(right) experts. Results are obtained by five-fold cross validation.
Error rates at 0% correspond to the initial static classifier. The peak
in error rates is discussed in Sec. 4.2.

both choices of experts, we compare the semi-supervised online al-
gorithm to two other learning strategies. The three variants shown in
each of the diagrams are:

1. XU takes the label hypothesized by LLGC (semi-supervised).

2. XU is ignored and not used for learning (XL only).

3. XU takes the label hypothesized by the current classifier
(classifier labels).

Results report cumulative error on the evaluation data, i.e. if ŷt de-
notes the label predicted by the classifier for xt, the error is given as
Err = 1

T

∑T
t=1[ŷt �= yt].

4.2. Experimental Results

Results are presented separately for two mismatch scenarios: change
of concepts, and introduction of new concepts. The experiments sim-
ulate behavior in adaptation phases. During normal operation, the
user need not provide any labels. Since the classifier is passive, user
action is required only in order to prompt the system to adapt.
Learning a changed concept. The baseline model is trained on 2
sets consisting of subclusters {o:*, pop} and {s:*, strqts,pno}. Dur-
ing the evaluation phase, subclusters s:mah, s:sho and pop are reas-
signed to the opposite classes. Fig. 2 shows the results for both GM
and LSE models. When the proportion of label data is low, using
the unseen labels via LLGC significantly improves system perfor-
mance. In all experiments conducted, the semi-supervised algorithm
consistently outperforms the other approaches until at least about
80% of labels are available. The error rate at 0% is the performance
of the initial baseline system. Initially, for very small numbers of
labels, overfitting to the labeled subset decreases prediction accu-
racy with respect to the baseline. Interestingly, for small label ratios,
overfitting effects increase with the number of labels, until the error
peaks and then decreases. More labeled points mean more adjust-
ment steps, and therefore stronger overfitting if the available infor-
mation is insufficient. Hence, the peaks in error rates are due a trade-
off effect between the information provided by the labels and the
number of learning steps they trigger. The decrease in performance
is most notable for Gaussian experts, which are less robust than the
LSE experts. In a real-world implementation, one would choose the

2023

Fig. 3. Absolute performance improvement of semi-supervised sys-
tem over comparison strategies (100 random runs).

baseline classifier until a minimum ratio of labels is available. While
the semi-supervised approach requires about 10% of labels to start
improving upon the baseline method, between 20% (LSE) and 40%
(Gaussian) are required if the unlabeled data is neglected. At large
label ratios, the Gaussian model slightly outperforms the LSE. The
semi-supervised version of the model requires only about 40% of
labels to reach optimal performance.

To evaluate the average behavior of the system when the change
of concept is not hand-picked, we generated 100 random runs of
groupings of the subclusters. For each case, four subclusters reverse
their labels during evaluation phase. Fig. 3 plots the absolute im-
provement in error rates of the semi-supervised method over the two
comparison classifiers, showing behavior consistent with the results
in Fig. 2.
Learning a new concept. The second type of classifier adaptation
is adjustment to previously unobserved music. Of particular interest
is the classifiers behavior when the new concept substantially differs
from those already incorporated in the baseline model. In this exper-
iment, the baseline model is trained on opera, {o:*}, and classical
orchestral/chamber music. During the evaluation phase, “modern”
music (Mahler and piano) are assigned to the opera class, and pop
music and Shostakovitch to the other class. Fig. 4 shows the results
for the LSE classifier. As in the concept change case, the amount
of feedback required by online learning with LLGC is substantially
reduced with respect to the fully supervised method.

5. DISCUSSIONS AND CONCLUSIONS

We have presented an algorithm for music preference learning that
combines an online approach to learning with a partial label sce-
nario. The classifier is capable of tracking changes in class distri-
butions and adapting to data that differs from previous observations,
in reaction to user feedback. Due to the integration of unlabeled
data in the learning process, only partial feedback is required for
the classifier to achieve satisfactory performance. The algorithm re-
mains passive unless user feedback triggers an adaptation step. A
window-based design limits both computational costs and memory
requirements in an economically feasible range.

A step towards applicability in a real-world scenario will require

Fig. 4. Cumulative Errors on learning new concepts

the incorporation of strategies that enable the algorithm to classify a
new piece of music as early as possible. Acoustic features should be
chosen accordingly. Adaptation speed has to be traded of against re-
liability, to prevent the device from oscillating back and forth due to
initially unreliable estimates. Since different types of music are more
or less quickly recognizable, one may consider estimating reliabil-
ity scores for classification results to control changes in the current
control program of the system.

Our algorithm design does not make any assumptions about the
base learner. In principle, any classification algorithm may be used,
e.g., the proposed algorithm may be extended by kernelization of the
LSE base learner, which generalizes decision boundaries beyond the
linear case. We expect our method to be a step towards adaptivity in
the control of “smart” hearing devices.
Acknowledgement. This work is funded by KTI, Nr8539.2;2EPSS-
ES.

6. REFERENCES

[1] M. Büchler, S. Allegro, S. Launer, and N. Dillier, “Sound classi-
fication in hearing aids inspired by auditory scene anlysis,” Jour-
nal of Applied Signal Processing, vol. 18, pp. 2991–3002, 2005.

[2] G. Tzanetakis and P. Cook, “Musical genre classification of
audio signals,” IEEE Trans. on Speech and Audio Processing,
vol. 10, no. 5, 2002.

[3] J. Z. Zolter andM. A. Maloof, “Using additive expert ensembles
to cope with concept drift,” in Proceedings of the 22nd Intl
Conference on Machine Learning, 2005.

[4] O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised
Learning, MIT Press, 2006.

[5] N. Cesa-Bianchi and G. Lugosi, Prediction, learning and
games, Cambridge University Press, 2006.

[6] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,
“Learning with local and global consistency,” in Advances in
Neural Infomation Processing Systems. 2004, vol. 16, pp. 321–
328, MIT Press.

[7] D. P. W. Ellis, “PLP and RASTA (and MFCC, and inversion) in
Matlab,” 2005, online web resource.

[8] G. Tzanetakis and P. Cook, “Marsyas: A framework for audio
analysis,” Organised Sound, vol. 4, no. 3, 2000.

2024

