NONNEGATIVE MATRIX FACTORIZATION FOR REAL TIME
MUSICAL ANALYSIS AND SIGHT-READING EVALUATION

Chih-Chieh Cheng, Diane J. Hu, and Lawrence K. Saul

Department of Computer Science and Engineering
University of California, San Diego
{chc028,dhu, saul}@cs.ucsd.edu

ABSTRACT

Sight-reading is the ability to read and perform music from a writ-
ten score with little or no preparation. Though an integral part of
musicianship, it is rarely or minimally addressed in traditional mu-
sic lessons. In this paper, we describe a real-time system for sight-
reading evaluation of solo instrumental music. The system is trained
to recognize monophonic and polyphonic music from acoustic in-
struments without digital pickups. The pattern-matching in the back-
end is achieved by nonnegative matrix factorization, an algorithm
that represents notes as combinations of learned templates and chords
as combinations of single notes. As part of the user interface, an
animated musical score provides beginning musicians with instant
visual feedback as they practice to improve their sight-reading.

Index Terms— Non-negative Matrix Factorization, Polyphonic
music processing, Machine learning, Sight-Reading evaluation

1. INTRODUCTION

One of the most important parts of musicianship is the ability to
sight-read or play unfamiliar music from a written score. A profi-
cient sight-reader can more easily take part in ensembles, accompany
other musicians, and learn new pieces for long-term study. Contrary
to popular belief, however, sight-reading is a learned skill that is
largely independent of a musician’s physical technique or level of
ear-training. To become a proficient sight-reader requires the con-
stant practice of sight-reading [1]. Unfortunately, the beginning mu-
sician often struggles without the help of a teacher who can provide
immediate feedback. Such feedback is not only necessary to identify
correctly versus incorrectly played notes, but also to sustain interest
when progress is often slow and unquantifiable.

To address these challenges, we have designed a prototype sys-
tem that helps beginning musicians practice their sight-reading in
the absence of human teachers. The intended operation of this sys-
tem is shown in Fig. 1. The front-end graphical interface is designed
specifically to facilitate sight-reading practice in a way that agrees
with commonly accepted pedagogical methods. The machine dis-
plays an animated score, “listens” to the player’s instrument, and
provides instant visual feedback distinguishing correctly versus in-
correctly played notes. While many existing systems have related
goals, our application distinguishes itself by (1) requiring no digital
pickups or electronic instruments, (2) targeting the needs of begin-
ning musicians, and (3) providing immediate, visual feedback.

The back-end of this system must operate in real-time to de-
termine which notes have been correctly played by the user. One
approach to do this is by analyzing the spectrum of the notes. The
spectral profile (or timbre) of a pitched musical instrument is char-
acterized by the relative strengths of its harmonics in the frequency

1-4244-1484-9/08/$25.00 ©2008 IEEE

2017

domain. For a single note, these harmonics occur at integer multi-
ples of the fundamental frequency of vibration, fo. The value of fj
indicates the periodicity of the acoustic waveform generated by the
instrument. For a percussion, wind, or string instrument, the value
of fo also corresponds essentially to the perceived pitch of whatever
note is being played.

The harmonics of a musical signal appear as peaks in the magni-
tude power spectrum computed by the fast Fourier transform (FFT).
When a single note is played, the pattern of harmonics is clear and
easily resolved, even by visual inspection. But when more than one
note is played, the pattern of harmonics is more complicated, and the
chord structure is not apparent from visual inspection. The analysis
of monophonic and polyphonic musical signals presents an interest-
ing challenge in acoustic pattern recognition [2, 3].

One useful model for musical analysis is to view musical chords
as constructive combinations of their constituent notes. Specifically,
in the frequency domain, the nonnegative superposition of magni-
tude power spectra for individual notes provides an excellent ap-
proximation to the magnitude power spectrum of those notes played
in combination. Based on this observation, many researchers have
suggested nonnegative matrix factorization (NMF) [4] as a strategy
for learning useful representions of pitched notes in polyphonic mu-
sic[5,6,7,8,9].

In this paper, we describe a similar framework for the back-end
of a real-time system for sight-reading evaluation. We use NMF
to learn nonnegative basis templates for each note and to evaluate
whether the sound from the user’s musical instrument matches the
notes on a given musical score. NMF has two distinct advantages
for the pitch-tracking problem in our application. First, it gracefully
handles the problem of detecting multiple pitches. Second, it pro-
vides an efficient framework for estimating the harmonic templates
of specific instruments. Such templates can potentially yield more
accurate pitch-tracking than generic schemes that do not exploit this
form of prior knowledge.

2. MUSICAL ANALYSIS BY NMF

2.1. Offline estimation of musical note templates

We begin by briefly reviewing NMF [4]. Given a large nonnegative
matrix Y, the goal of NMF is to derive a low-rank approximation
Y ~ Y where Y = WX factorizes as the product of two smaller
nonnegative matrices W and X. One appropriate cost function for
NMEF is the generalized Kullback-Leibler (KL) divergence:

GOY,) =3 [Yaelog(Var/Yar) = Yar + Yar| . (D

at

ICASSP 2008

Fig. 1. Player demonstrates system setup on the piano.

This cost function vanishes if and only if Y = Y. It can be op-
timized subject to the nonnegativity constraints on W and X by
iterating the multiplicative updates:

Was = Was [30 XoeVar/ Ve, @)
S WapYat/Yar
Xp — Xg |Zoofot/le 3)
‘ ' Z»YWWB

In practice, the updates are applied in an alternating fashion, holding
X fixed while re-estimating the elements of W, then holding W
fixed while re-estimating the elements of X. Alternated in this way,
the updates converge monotonically to a local minimum of the cost
function in eq. (1).

NMEF is very well suited to learning representations of musical
notes based on their magnitude power spectra in the frequency do-
main. In our application, the matrices Y, W, and X have the fol-
lowing interpretation: (i) the columns of Y store the (nonnegative)
power spectra from short analysis windows of single note record-
ings; (ii) the columns of W store basis templates for the magnitude
power spectra of these notes; (iii) the columns of X store the co-
efficients used to reconstruct the actual observations in Y from the
learned templates. The basis templates in W and the reconstruction
coefficients in X are constrained to be nonnegative.

For our prototype system, we used NMF to learn basis templates
in W for sixty notes spanning five octaves on the piano. The single
note recordings were obtained from the University of lowa Musical
Instrument Samples data set. This data set contains samples for each
note at three different levels: soft, medium loud, and loud. We used
mono clips from all three levels (sampled at 44100 Hz) as training
data, after removing beginning and ending silences from each wave-
form. FFTs were performed in 25 ms shifts on half-overlapping
analysis windows of 50 ms duration. From the magnitude spectra
of these FFTs, we trained 5 basis templates for each note. Multiple
templates per note were used to model variations in timbre due to
onset/offset effects and varying dynamics.

2.2. Note and chord verification

We use the estimated basis templates to evaluate whether the user is
playing the desired note(s) on the musical score. Note that this prob-
lem is simpler than automatic transcription or score-following (not to
mention source separation), since our only task is to verify whether
correct notes are being played at the correct tempo. In particular,
our application does not require the system to identify wrong notes;
it only needs to detect them. Also, our application does not need
to track variations in tempo; indeed, one important goal of sight-
reading is to play strictly in time. Our framework does not attempt

2018

Compute cost-of-fit to power spectrum using Poor fit? No credit:
templates of correct notes.) wrong note(s).
Good fit?
Compute cost-of-fit to power spectrum using Better fit? No credit:
templates of notes one octave higher.) octave error.

Worse fit?

No credit:

distinct note templates. for reconstruction? missing note(s).

Examine reconstruction weights from Some notes not needed

All notes needed for reconstruction?

no missing or wrong notes.

Full credit: ’

Fig. 2. Flow chart of decision-making process for sightreading eval-
uation; see text for details.

to solve the general problems of automatic transcription or score-
following, which would require more detailed modeling and exten-
sive pattern-matching. Instead, the framework focuses on providing
feedback in real-time, which restricts the number of available cycles
we have for computation.

To analyze short-time power spectra of the user’s playing, we
attempt to reconstruct them from the basis templates estimated by
NME. Roughly speaking, if the templates for the desired notes are
necessary and sufficient to reconstruct the observed power spectra to
a high degree of accuracy, then the user is credited for having played
the correct notes. A high level flow chart of the decision-making
process is shown in Fig. 2. The remainder of this section provides
more details.

The main criterion we use for note and chord matching is a nor-
malized form of the reconstruction error from NMF. In particular,
let y; denote the power spectrum from one analysis window of the
user’s playing centered on time ¢. Also, let W, collect the columns
of W whose templates represent notes also indicated by the musi-
cal score at this time. The optimal reconstruction y: = Wyx; is
obtained by minimizing the generalized KL divergence in eq. (1) be-
tween y: and y; over the nonnegative coefficients of x;. Finally, to
obtain an overall cost-of-fit at time ¢, we normalize the reconstruc-
tion error by the total power in the window:

1 ~ A
€t = i 2 Wor 108 (Woe /Jot) = You +Ge] . 4)

The normalization ensures that the reconstruction error is evaluated
in proportion to the overall signal level.

For fixed basis templates W, minimizing the reconstruction er-
ror in eq. (4) is a convex optimization, and the iterative update in
eq. (3) converges quickly to the global solution. Typically, less than
20 iterations are required for satisfactory convergence. In practice,
this is sufficient for implementation in our real-time system which
verifies the user’s playing at a frame rate of 40 frames per second.

To verify that the user is playing the desired note(s) at a given
time ¢, we use a multi-step process. The first step attempts to recon-
struct the observed power spectrum y; with templates from these
notes. At the end of this first step, we label the note(s) as misplayed
if the cost-of-fit in eq. (4) from the reconstruction exceeds a fixed
threshold. In this case, the process terminates. We have found that
with a carefully chosen threshold, this step yields very few false neg-
atives (i.e., rejecting correct notes as incorrect ones).

Further steps are required if the cost-of-fit in the first step is be-
low threshold, indicating a good fit. These further steps are required

@ 8]

Number of Frames
>

Number of Frames

@

] 10 20

30 40
Cost-of-Fit

Fig. 3. Left: histograms of costs-of-fit for short-time magnitude
spectra on the piano. The left histogram shows the costs-of-fit when
amiddle C is reconstructed by the (matched) templates for middle C;
the right histogram shows the costs-of-fit when a C# (one half-step
higher) is reconstructed from the (mismatched) templates for mid-
dle C. The histograms are well-separated; thus, by choosing an ap-
propriate threshold, we can detect notes off by a half-step and reject
them as errors. Right: analogous histograms when the chords CEG
and DbFAb are considered as potential matches to the desired notes
CEG. This simple thresholding scheme works to detect errors from
other intervals, with the exception of single octave errors.

aor,

<
7

Cost-of-Fit
-2)
it
o
Cost-of-Fit

8

M

\ o
_/A\ e <

13

05
Time (sec)

Fig. 4. Left: Costs-of-fit when a note one octave above middle C is
matched to templates for the same note (bottom trace in red) and one
octave below (top trace in blue). Right: Costs-of-fit when a triad one
octave above middle C is matched to templates for the same notes
(bottom trace in red) and one octave below (top trace in blue). The
octave error is revealed by computing both costs-of-fit and compar-
ing them directly.

to verify the identity of the played note and to rule out false positives
in which incorrect notes are mistaken for correct ones. In practice,
false positives from the first step are rare with the exception of sin-
gle octave errors. This confusion occurs when the played notes are
exactly one octave above the notes in the score. The second step of
our verification process is designed to remove these false positives.
This is done by also reconstructing the observed power spectrum y;
from the templates of notes one octave higher than those indicated
in the score. If this latter fit is more accurate than the original one,
then the user’s playing is again labeled as incorrect.

Finally, one additional step is required to verify that the user’s
playing is correct in the case that the musical score indicates two or
more notes (e.g., a chord). When a chord is indicated, not only do
we verify that the templates from the correct notes yield a superior
fit, but we also check that templates from all the notes of the chord
are needed in the reconstruction. This is done by checking the recon-
struction coefficients in x;. If this final check is satisfied, the chord
is recognized as being played correctly. Otherwise, it is assumed
that one or more notes from the chord are missing. See Fig. 2 for a
schematic diagram of the overall note verification process.

Figs. 3 and 4 show some experimental results that were used
in developing a prototype system. These experiments helped to de-
termine appropriate thresholds for the branch points in Fig. 2. The
samples in these tests were recorded by placing a laptop with a built-
in microphone on top of the console piano in Fig. 1.

2019

3. REAL-TIME SIGHT READING SYSTEM

We have implemented the back-end described in the previous sec-
tion as part of an interactive system for sight-reading practice. Our
system has been designed with an awareness that practicing to sight-
read is very different than practicing for performance [1]. For effec-
tive sight-reading practice, the following three guidelines are widely
accepted: (1) Proceed at a sufficiently slow tempo to play most notes
correctly. (2) Never go backward to correct mistakes. (3) Pay atten-
tion to rhythm, either by counting out loud or using a metronome.
We have attempted to incorporate each of these guidelines into the
design of our interface, as described below.

To begin the application, the user chooses a sight-reading ex-
ercise at the appropriate level. Once selected, the musical score is
displayed, and the user must play from the score at the specified
tempo. Points are given for each note that is played correctly. How-
ever, if too many incorrect notes are played, the exercise restarts at a
slower tempo. This restart mechanism forces a consistent tempo that
is appropriate to the user’s sight-reading level. In accordance with
the tempo, the musical score scrolls to the left, and previously played
notes disappear off the screen. This scrolling suppresses the instinc-
tual tendency to back-track and correct previous mistakes. Further,
to improve rhythmic literacy, “progress bars” are drawn above each
note. The length of each progress bar is proportional to the dura-
tion of each note and “fills up” (with color) at the rate that the note’s
duration is passing.

At the conclusion of the piece, the player recieves a performance
score based on the difficulty of the selected piece, the tempo at which
the piece was played, and the number of notes played correctly. As
a quantitative metric for self-evaluation, the performance score pro-
vides a well-defined target for further improvement, as well as an
incentive for continued playing.

We have implemented a prototype of this system with basic func-
tionality on the piano. All software was implemented in Objective-
C/C on the Cocoa platform and tested on a 2.16 GHz Intel Core Duo
MacBook Pro.

aneo “The Sight-Reading Tutor

—
PRACTICE YOUR

SIGHT
READING!
S
Choose a piece in
the setings area | [
and press start!
Play notes that

F Major, by Eugene Kuo

are highighted
and get polnts!

Fig. 5. Screenshot of the application in progress. The pink note
indicates the current position of the musical score, while the blue
notes indicate notes correctly played.

4. EXPERIMENTAL RESULTS

We evaluated the system by looking at its performance in off-line
and on-line settings.

4.1. Offline Experiments

First, in an offline setting, we evaluated how well the algorithm dis-
tinguished correctly versus incorrectly played notes. In order to sim-
ulate the real-time environment, we recorded the data for these ex-
periments by placing a laptop with a built-in microphone on top of
the console piano in Fig. 1. Each test sample was 1.5 sec in dura-
tion, generating 60 frames to be analyzed by NMF. The computation
time was approximately 2 ms per frame, thus meeting the need for a
real-time application.

Table 1 shows the results from these experiments on single notes.
For each experiment, the results show the number of frames, out of
60, labeled correctly by the implementation described in Section 2.
The second, third, and fourth rows simulate common errors made
during sight-reading practice, in which the played note (indicated by
the row) differs from the correct note (indicated by the column) by a
half-step or a full octave. Overall, the vast majority of frames with
half-step and octave errors are correctly labeled as errors.

Table 2 shows similar results for experiments on chords. We per-
formed tests on five major triad chords to simulate correct playing as
well as common errors. The second and third rows show the results
for half-step and octave errors, as in the single note experiments. The
fourth and fifth rows show the results when a chord is played with
missing or wrong notes. In these cases, the system should detect that
the partially correct chord is not completely correct.

Overall, in Tables 1 and 2, the frame-by-frame results are quite
accurate, especially considering that in the actual system (as de-
scribed in section 4.2), the results of individual frames are aggre-
gated over the duration of an entire note or chord.

Table 1. Experimental results for single notes.

Test Cases C|D|E|F G
Correct Note 60 | 60 | 59 | 60 | 60
Half-step up (sharp) 2 0 0 1 0
Half-step down (flat) 0 0 0 0 1
One octave higher 0 1 0 0 0

| False Negative: 0.3% | False Positive: 0.4% |

Table 2. Experimental results for major triad chords.

Test Cases C|D|E|F G
Correct Chord 60 | 58 | 60 | 60 | 60
Half-step up (sharp) 0 0 0 0
One octave higher 0 0 9 0
One wrong note 0 0 0 0
One missing note 0 0 0 10

[False Negative: 0.6% [False Positive: 1.8%

— O O| =

4.2. Real-time System Performance

To evaluate the accuracy of feedback in our real-time system, we
randomly selected ten sight-reading exercises of varying difficulty
and used music software to generate three audio files for each ex-
ercise, testing different conditions. The first file played the exercise
perfectly; the second transposed the exercise to a different key; the
third file transposed the exercise by exactly one octave. Each audio
file was then played through a set of speakers next to a laptop run-
ning the sight-reading application. When the exercise was played
perfectly, the system recognized 96% of the notes as correct; we
note that exercises with slower tempos had nearly perfect accuracy
while exercises with faster tempos contributed most to this overall

2020

error rate. On the other hand, when the exercise was played in a
different key or octave, 98.2% of notes were successfully rejected.
In future work, we intend to address these remaining errors by more
systematic tuning of cost-of-fit thresholds and by rapidly adapting
NMF templates to the student’s individual instrument.

5. CONCLUSION

In this paper we have described a real-time system for sight-reading
evaluation. The pattern-matching in the back-end of our system is
based on NMF. In particular, we use NMF to learn templates for
musical notes in an offline setting. Reconstruction errors from these
templates are then used to analyze musical input in real-time and
match it against a desired score. Overall, the system is very accu-
rate. The system is designed for beginning sight-readers on acoustic
instruments without digital pickups or MIDI interfaces. Future work
will focus on the ability to give partial credit when only a subset of
notes are played correctly, as well as adding new instruments, such
as the recorder, violin, and saxophone.

6. REFERENCES

[1] A.Lehmann and V. McArthur, “Sight-reading: Developing the
skill of reconstructing a musical score,” in Science and Psychol-
0gy of Music Performance, R. Parncutt and G McPherson, Eds.,
pp- 135 — 150. Oxford University Press, 2002.

[2] A. de Cheveigne, “Multiple f0 estimation,” in Computational
Auditory Scene Analysis: Principles, Algorithms, and Applica-
tions, D.-L. Wang and G. J. Brown, Eds., pp. 45-80. John Wiley
& Sons, Inc, 2007.

[3] M. Goto, “Analysis of musical audio signals,” in Computational
Auditory Scene Analysis: Principles, Algorithms, and Applica-
tions, D.-L. Wang and G. J. Brown, Eds., pp. 251-296. John
Wiley & Sons, Inc, 2007.

[4] D.D. Lee and H. S. Seung, “Learning the parts of objects with
non-negative matrix factorization,” Nature, vol. 401, pp. 788—
791, 1999.

[5] P. Smaragdis and J. C. Brown, “Non-negative matrix factoriza-
tion for polyphonic music transcription,” in IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics, 2003.

[6] S. A. Abdallah and M. D. Plumbley, “Polyphonic transcription
by non-negative sparse coding of power spectra,” in Proceed-
ings of the 5th International Conference on Music Information
Retrieval (ISMIR), pp. 318-325. Barcelona, Spain, 2004.

[7]1 F. Sha and L. K. Saul, “Real-time pitch determination of one
or more voices by nonnegative matrix factorization,” in Ad-
vances in Neural Information Processing Systems 17, L. K. Saul,
Y. Weiss, and L. Bottou, Eds., pp. 1233-1240. MIT Press, Cam-
bridge, MA, 2005.

[8] A. Cont, “Realtime audio to score alignment for polyphonic
music instruments using sparse non-negative constraints and hi-
erarchical HMMs,” in IEEE International Conference in Acous-
tics and Speech Signal Processing (ICASSP), Toulouse, France,
May 2006.

[9] T. Virtanen, “Monaural sound source separation by non-negative
matrix factorization with temporal continuity and sparseness cri-
teria,” IEEE Transactions on Audio, Speech, and Language Pro-
cessing, vol. 15(3), pp. 1066-1074, 2007.

