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ABSTRACT

This paper studies a Bayesian classifier which recognizes Gaussian

minimum shift keying (GMSK) modulated signals with different

bandwiths. We focus on identifying two different GMSK signals

with BT = 0.25 and BT = 0.5 standardized by the consultative

committee for space data system (CCSDS) for future space missions.

The main idea of the proposed classifier is to compute the posterior

probability of the observation sequence given each possible model

by a modified Baum-Welch (BW) algorithm. The received GMSK

signals are then classified according to the maximum a posteriori

(MAP) rule.

Index Terms— modulation classification, Baum-Welch (BW)

algorithm, GMSK modulation, Bayes classifier.

1. INTRODUCTION

Digital modulation classification consists of recognizing the type of

a modulated signal corrupted by noise and other impairments. It

is required in many communication applications including coopera-

tive and non-cooperative scenarios (see for instance [1, 2] and refer-

ences therein). Most studies have concentrated on identifying vari-

ous types of linear modulations by using likelihood or feature-based

classifiers. Likelihood-based classifiers are based on hypothesis test-

ing theory and required to determine the probability density function

(pdf) of the received signal conditioned on each class. This deter-

mination is often a difficult problem which may require intensive

computational cost methods. Conversely, appropriate features can

be extracted from the received signal and the modulation classifica-

tion problem is reformulated in this new feature space. The features

which have shown interesting properties for classifying linear mod-

ulations include the instantaneous amplitude, phase and frequency,

statistical moments, higher-order statistics or wavelet coefficients of

the received signal (see [2] for details).

Surprisingly, the classification of non-linear modulations has re-

ceived less attention in the literature though these modulations play

a great deal in modern communications. Polydoros studied different

methods for classifying non-linear modulations with different modu-

lation indexes [3,4]. A classifier based on an approximate likelihood

function for a multiple M-ary frequency-shift keying (MFSK) signal

(transmitted through a Rayleigh fading channel) was also studied

in [5]. However, classification problems involving GMSK modula-

tions have not been considered in the literature (to the best of our

knowledge), despite the popularity of GMSK signals. This paper

studies a Bayesian classifier which recognizes GMSK signals with

different bandwidths BT = 0.25 and BT = 0.5 as recommended

by the CCSDS [6]. The proposed algorithm assumes that these two

non-linear modulations have been pre-identified from other linear

modulation candidates. This preprocessing step might be achieved

by feature-based classifiers that discriminate constant and noncon-

stant envelope signals. For instance, the maximum of the squared

Fourier transform of the normalized signal amplitudes has been used

for this purpose in [7]. Note that the classifier performance will be

studied especially at small SNRs as required by GMSK modulation

applications.

The classification of linear modulation signals propagating via

unknown intersymbol interference (ISI) channels has been recently

studied in [8]. The first step of the proposed algorithm estimated the

channel coefficients (which are related to the signal means) and noise

variance by using the Baum-Welch (BW) algorithm. The received

communication signal was then identified according to the MAP

rule. In this work, we modify the algorithm proposed in [8] to handle

non-linear modulations corrupted by additive white Gaussian noise

(AWGN). As explained before, this paper is devoted to the classi-

fication of GMSK signals. The choice of GMSK modulations can

be motivated by many interesting properties including spectrum effi-

ciency, capacity of supporting several receivers, and high immunity

against interference (see [9] and references therein). The CCSDS

standard uses two GMSK signals with BT = 0.25, L = 4 and

BT = 0.5, L = 2. As it is widely known, the GMSK modulation

is a non-linear continuous phase modulation (CPM) with memory.

After constructing the state trellis associated to a GMSK signal, the

BW algorithm can be applied to estimate the posterior probability of

the received modulated signal as done in [8] for linear modulations

in presence of residual channel interferences.

This paper is organized as follows. Section 2 gives some useful

information regarding GMSK signals. Section 3 presents the signal

model used for modulation classification. The received signal is mo-

deled as a probabilistic function of an hidden state represented by a

first order hidden Markov model (HMM). Section 4 recalls the main

steps of the BW algorithm which determines the posterior probabil-

ity of the observation sequence given the model and estimates the

unknown model parameters. Section 5 studies the performance of

the MAP rule based on the posterior probabilities computed by the

BW algorithm. Simulation results and conclusions are reported in

Sections 6 and 7.

2. GMSK SIGNALS

GMSK signals are partial CPM signals (with modulation index h =
0.5 and Gaussian frequency shaping) defined as [10]:

x(t) = A cos (2πfct + Φ(t,a)) , t ∈ R,

where fc is the carrier frequency and Φ(t,a) is the so-called excess

phase. The transmitted data sequence of M-ary symbols selected
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from the alphabet ±1,±3, . . . ,±(M − 1) denoted as a = {ak} is

embedded in the excess phase

Φ(t,a) = 2πh
∞�

k=−∞

akq(t − kT ), (1)

where q(t) =
� t

−∞ g(τ)dτ and T is the symbol duration. The fre-

quency shape pulse g(t) has a smooth phase shape over a finite time

interval 0 ≤ t ≤ LT (where L is the pulse length) and is approxi-

mately zero outside this interval. For a GMSK signal, g(t) is defined

as

g(t) =
1

2T

�
Q

�
2πB

t − T
2√

ln 2

�
− Q

�
2πB

t + T
2√

ln 2

��
,

where B is the 3dB bandwidth of the lowpass Gaussian filter (with

0 ≤ BT ≤ 1) and Q(t) =
�∞

t

1√
2π

exp
�
− τ2

2

�
dτ . The excess

phase during interval [kT, (k + 1)T ] can be written as

Φ(t,a) = θk(t,a) + φk,

where θk(t,a) is the instant phase

θk(t,a) = 2πh

k�
i=k−L+1

aiq(t − iT ),

and φk is the accumulated phase (memory) of all symbols up to time

k − L (sometimes called cumulant phase)

φk = hπ

k−L�
i=−∞

ai (mod 2π).

The cumulant phase represents the constant part of the total excess

phase in [kT, (k + 1)T ], and is equal to the sum of the maximum

phase changes contributed to each symbol, accumulated along the

time axis up to the (k − L)th symbol interval. It can be recursively

computed as

φk+1 = φk + hπak−L+1.

The instant phase θk(t,a) is determined by the data symbol ak and

the previous L − 1 symbols. If h is rational, i.e. h = 2q/p, the

number of distinct values of φk is p. The state of a CPM signal at

t = kT is classically defined as the vector

sk = (φk, ak−1, ak−2, . . . , ak−L+1).

Each state corresponds to a specific value of the excess phase.

3. SIGNAL MODEL

The baseband GMSK signal can be written as u(t) = exp[jΦ(t,a)],
where the phase Φ(t,a) has been defined in (1). The baseband signal

is modulated by a local oscillator exp(jωct). The signal is corrupted

by additive white Gaussian noise w(t), with spectral density N0/2.

At the receiver side, the received signal is multiplied by the syn-

chronous carrier exp(−jωct), followed by low pass filters to gen-

erate the real and imaginary parts of the complex envelope of the

received signal. After downconversion, we obtain the received base-

band signal

y(t) = u(t) ⊗ f(t) + z(t), t ∈ R,
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Fig. 1. GMSK constellations (one sample per symbol).

where f(t) is the impulse response of the lowpass filter, z(t) =
w(t)⊗f(t) is a normalized complex-valued additive Gaussian noise

process with variance σ2
z and “ ⊗ ” denotes convolution. The base-

band complex envelope of the received modulated signal sampled at

one sample per symbol (t = kT ) at the output of the lowpass filters

can be written as:

y(k) = u(k) ⊗ f(k) + z(k), k = 1, ..., Ns,

where Ns is the number of symbols in the observation interval. Two

GMSK signal “constellations” obtained at the output of a square root

raised cosine filter (roll-off factor α = 0.35 and cutoff frequency

adapted to symbol duration) in the absence of noise are shown in

Fig. 1. The two constellations are clearly similar even if they are

obtained from two distinct GMSK modulations.

The received signal y(k) can be modeled as a probabilistic func-

tion of an hidden state at time k which is represented by a first or-

der HMM. This model will be used efficiently for classifying two

nonlinear GMSK modulations with different bandwidths (denoted

as λ1, λ2). The main HMM characteristics are summarized below:

1. The state of the HMM at time instant k is sk which belongs

to an alphabet denoted as {s(1), s(2), ..., s(N)} of size N =
4ML−1, where s(j) is the jth possible value of sk. As an

example, for binary symbols and GMSK modulation with

BT = 0.5, L = 2, hence N = 8 different states. For binary

symbols and GMSK modulation with BT = 0.25, L = 4,

yielding N = 32 different states.

2. The state transition probability distribution is

dij = P [sk+1 = s(j)|sk = s(i)],

which equals 1/M when all symbols are equally likely.

3. The initial state distribution vector π = (π1, ..., πN )T is de-

fined by πi = P [s1 = s(i)] = 1/N, i = 1, ..., N .

4. The pdf of the observation y(k) conditioned on state i, de-

noted as pi(y(k)) � p(y(k)|s(i)) can be written

pi(y(k)) =
1

σz

√
2π

exp

	
−|y(k) − mi|2

2σ2
z



,

for i = 1, ..., N , where mi is the ith value of ejΦ(kT,a). We

denote as m = [m1, ..., mN ]T the vector containing all pos-

sible “constellations” points.
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4. BW PARAMETER ESTIMATION

Given the above HMM, the BW algorithm can be used to determine

the posterior probability of the observation sequence y given the

model λ ∈ {λ1, λ2} and estimate the unknown model parameters

m and σ2
z . The BW algorithm is based on a forward-backward pro-

cedure which estimates iteratively the unknown model parameters

maximizing the posterior probability of the unknown parameters.

After convergence, the BW algorithm provides MAP estimates of

m and σ2
z such that:

(�m, �σ2
z) = arg max

m,σ2
z

P (m, σ2
z |y, λ).

The algorithm needs a forward operation to compute P (y|m, σ2
z , λ)

whereas a forward/backward procedure is necessary to estimate the

unknown parameters m and σ2
z . This section describes the princi-

ples of the standard BW algorithm detailed for instance in [11]. An

LMS-type update BW algorithm is also presented.

4.1. The Standard BW Algorithm

The standard BW algorithm estimates P (y|m, σ2
z , λ) by using the

following three step procedure iteratively:

1. Compute the normalized forward variable αi(k).

Initialization:

αi(1) = πipi(y(1)), 1 ≤ i ≤ N,

c(1) =

�
N�

i=1

αi(1)

�−1

.

Induction: for k = 1, ..., Ns − 1, j = 1, ..., N

αj(k + 1) = c(k)pj(y(k + 1))
N�

i=1

αi(k)dij ,

c(k + 1) =

�
N�

i=1

αi(k + 1)

�−1

.

2. Compute the normalized backward variable βi(k).

Initialization: βi(Ns) = c(Ns), 1 ≤ i ≤ N ,

Induction: for k = Ns − 1, ..., 1, i = 1, ..., N ,

βi(k) = c(k)

N�
j=1

dijpj(y(k + 1))βj(k + 1),

3. Estimate the model parameters

�mi =

�Ns

k=1 γi(k)y(k)�Ns

k=1 γi(k)
,

�σ2
z =

1

Ns

Ns�
n=1

N�
i=1

γi(n)|mi − y(n)|2,

where γi(k) = αi(k)βi(k).

In a batch mode implementation, steps 1 to 3 are carried out itera-

tively with updated values of pj(y(k)) until convergence. Thus, the

estimated probability of the observation sequence given the model is

computed as follows

�P (y|m, σ2
z , λ) =

�N

i=1 αi(Ns)�Ns

i=1 c(i)
. (2)

Different modifications have been applied to the standard BW algo-

rithm to improve its performance or reduce computation complexity.

One of these modifications is presented in Section 4.2.

4.2. The LMS-type Update Algorithm

The standard BW algorithm suffers from the “curse of dimensional-

ity” because the computation complexity and memory requirement

are proportional to the square of the number of the states. Further-

more the convergence rate is rather slow. Thus, it is worth seek-

ing improvements in terms of memory and computation speed. In

this paper, we have implemented the LMS-type update algorithm

initially presented in [12]:

mi(k) = mi(k − 1) + μmγi(k)ei(k),

σ2
z(k) = (1 − μs)σ

2
z(k − 1) + μs

�
N�

i=1

γi(k)|ei(k)|2
�

,

where ei(k) = y(k) − mi(k − 1) for i = 1, ..., N . The initializa-

tion and time-induction calculation for the forward variable can be

computed as in the standard BW algorithm. The calculation of back-

ward variable can be obtained by using the fixed-lag or sawtooth-lag

schemes [13]. In this paper, we have used the fixed-lag scheme as

explained in [8].

5. CLASSIFICATION RULE

The MAP classification rule used to recognize GMSK signals is de-

fined as follows:

Assign y to λi if �P (y|λi)P (λi) ≥ �P (y|λj)P (λj), ∀j = 1, ..., c,

where c is the number of possible modulations (or the number of

classes) and �P (y|λi) � �P (y|m, σ2
z , λi) is obtained from (2). Note

that the whole sequence of length Ns is required to estimate �P (y|λi)
even if the online LMS-type update algorithm has been used for the

computation of mi(k) and σ2
z(k). Note also that the observation

length Ns required to properly identify the modulation constellations

should be greater than the maximum number of HMM states in the

class dictionary so that every possible state can be reached by the

algorithm. This paper assumes that the different modulation formats

are equally likely e.g., P (λi) = 1/c, i = 1, ..., c.

6. SIMULATION RESULTS

Many simulations have been carried out to evaluate the performance

of the proposed classifier. All constellations have been normalized

to unit energy and generated with the bit duration T = 1 and the

sampling rate Fe = 10. The signal to noise ratio per bit is defined as

Eb/N0, where Eb is the energy per bit at the input of the receiver.

The classification performance is the average probability of correct

classification defined as

Pcc =
1

c

c�
i=1

P [assigning y to λi|y ∈ λi] .

Figure 2 displays the classification performance as a function of

Eb/N0 for the two GMSK modulations (five different values of the

number of observations Ns are considered). This figure allows one

to appreciate good classification performance especially for small

Eb/N0. Figure 3 shows the classification performance versus Eb/N0
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Fig. 2. Classification performance versus Eb/N0 for different num-

bers of observation symbols Ns.
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Fig. 3. Classification performance versus Eb/N0 for different roll-

off factors α.

for different values of roll-off factor α. Clearly, the roll-off factor

has an impact on the performance and it should be adjusted as a

function of signal bandwidth in practical scenarios. The last sim-

ulations study the effect of a phase offset obtained by rotating the

constellation with an angle ψ (this phase offset is due to synchro-

nization errors at the receiver). Figure 4 shows that the classification

performance seems to be robust to moderate synchronization errors

especially for Eb/N0 ≥ 0dB.

7. CONCLUSIONS

This paper addressed the problem of classifying GMSK signals with

different values of BT transmitted through AWGN channels. The

received communication signal was classified according to an MAP

rule. This rule required to estimate the posterior distribution of the

received communication signal conditionally to each modulation be-

longing to a known dictionary. This estimation was conducted by

using the Baum-Welch algorithm for HMM which has shown inter-

esting properties for speech recognition and blind channel character-

ization. The performance of the proposed classifier was assessed by
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Fig. 4. Classification performance versus phase offset.

means of several simulation results. Perspectives include the joint

classification of linear and nonlinear modulations using the Baum-

Welch algorithm.
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