
COST-SENSITIVE BOOSTING ALGORITHMS AS GRADIENT DESCENT

Qu-Tang Cai, Yang-Qui Song, Chang-Shui Zhang

State Key Laboratory on Intelligent Technology and Systems,
Tsinghua National Laboratory for Information Science and Technology (TNList),

Department of Automation, Tsinghua University, Beijing, China.

ABSTRACT

AdaBoost is a well known boosting method for generating
strong ensemble of weak base learners. The procedure of Ad-
aBoost can be fitted in a gradient descent optimization frame-
work, which is important for analyzing and devising its pro-
cedure. Cost sensitive boosting (CSB) is an emerging sub-
ject extending the boosting methods for cost sensitive clas-
sification applications. Most CSB methods are performed
by directly modifying the original AdaBoost procedure. Un-
fortunately, the effectiveness of most cost sensitive boosting
methods are checked only by experiments. It remains unclear
whether these methods can be viewed as gradient descent pro-
cedures like AdaBoost. In this paper, we show that several
typical CSB methods can also be view as gradient descent for
minimizing a unified objective function. We then deduce a
general greedy boosting procedure. Experimental results also
validate the effectiveness of the proposed procedure.

Index Terms— Boosting, Cost-sensitive Classification,
Gradient Descent, Optimization

1. INTRODUCTION

Boosting algorithms are currently among the most popular
and most successful algorithms for pattern recognition tasks.
AdaBoost [1] is a practically successful boosting algorithm,
which can also be viewed as the gradient descent procedure
of a certain surrogate function [2, 3]. The gradient descent
view is essential for both devising new algorithms and study-
ing the algorithm’s properties such as convergency and con-
sistency [4, 5]. Due to the practical success of AdaBoost, it
is interesting to extend the procedure to various tasks, one of
which is cost sensitive learning [6].

In general, classification algorithms are designed to min-
imize the misclassification error. However, there are many
problems which are naturally cost sensitive, and methods for
minimizing the misclassification error tend to be unsatisfac-
tory. For example, the cost of misdiagnosis of classifying
healthy people as sick and that of classifying sick people as
healthy are apparently not equal, since the latter may lead
to serious results. Cost-sensitive learning is a suitable way

Supported by National 863 project(No. 2006AA10Z210).

for solving such problems, where classifiers are designed
to be optimal for weighted loss. The weights can empha-
size the more important errors. To extent boosting for cost
sensitive learning scenarios, several cost sensitive boosting
(CSB) methods have been proposed, such as AdaCost [7],
AdaC{1,2,3} [8], and asymmetric boosting [9].

Most of the CSB methods originated from heuristically
modifying the weights and confidence parameters of Ad-
aBoost, and their effectiveness is checked only by experi-
ments. It remains unclear in theory whether or why these
manipulations work as expected. One important problem is
whether CSB algorithms can be viewed as gradient descent
procedure like AdaBoost. If they can, the previous results of
AdaBoost concerning gradient descent, such as convergency
and consistency, may be applicable parallelly. Unfortunately,
there are a vast increasing amount of CSB methods till now,
and it is not possible to cover them all in this paper. However,
since the motivation of CSB methods is to extend AdaBoost
to cost sensitive learning, we only consider several typical
CSB methods which can include AdaBoost as a special case.
In later sections, we will show that the CSB algorithms can be
fitted into a unified gradient descent framework for a common
surrogate function.

1.1. Basic Settings and Notations

Like AdaBoost and the CSB algorithms, we will only con-
sider binary classification problems. We use X as the feature
space, and Y = {+1,−1} as the set of labels. Each example
is represented as a feature-label pair, (x, y), where x ∈ X
and y ∈ Y . The set of weak base classifiers in the boosting
procedure is denoted by H, whose linear span is denoted by
F . Each weak learner in H outputs the binary labels in Y .
We denote I(·), sign(·), and E(·), the indicator function, the
sign function and the expectation, respectively.

2. ADABOOST AND COST SENSITIVE BOOSTING

We revisit AdaBoost and the considered typical CSB meth-
ods, including AdaCost [7], AdaC{1,2,3} [8], and asymmet-
ric boosting(AsymBoost) [9], which have AdaBoost as a spe-
cial case.

20091-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

Table 1. Algorithmic Procedure of AdaBoost

Input: (x1, y1), . . . , (xn, yn); where xi ∈ X, yi ∈
{−1, +1}, and i = 1, . . . , n.

Initialization: Set weights w
(0)
i = 1

n on training data.

Repeat for t = 1, 2, . . . , T :

(a) Train weak learner ft using weights w
(t−1)
i on

the training data,

ft = arg max
f∈H

n∑

i=1

yiw
(t−1)
i h(xi). (1)

(b) Compute the (nonnegative) weight αt of ft:

αt =
1
2

ln
1 − errt

errt
, (2)

where errt =
∑n

i=1 D
(t−1)
i I(ft(xi) �= yi)

and D
(t−1)
i

.= w
(t−1)
i∑n

i=1 w
(t−1)
i

.

(c) Reweight: update weights of training data

w
(t)
i = w

(t−1)
i e−αtyift(xi). (3)

Output: output the final classifier sign(
∑T

t=1 αtft(x)).

2.1. AdaBoost

The AdaBoost procedure is described in Table 1. It employs
an iterative procedure for ensemble learning, which produces
a linear combination of weak hypotheses. In each stage of
the boosting procedure, AdaBoost produces a probability dis-
tribution on the examples, and then obtain a weak hypothe-
sis whose misclassification error is better than random guess.
The weak hypothesis is then used to update the distribution,
and the hard examples receive high probability. At the end
of each iteration, the weak hypothesis is added to the linear
combination to form the current hypothesis of the algorithm.

2.2. Cost Sensitive Boosting Methods

For misclassifying each xi, cost sensitive boosting methods
introduce a prescribed cost ci, and incorporate it into the
boosting procedure.
AdaCost: AdaCost [7] incorporates a cost adjustment
function β in the computation of err and in the reweight step.
AdaCost assigns a cost ci ∈ [−1,+1] to the misclassifica-
tion of xi, and pre-weights xi with weight ci∑n

i=1 ci
. In the

reweight stage, w
(t)
i is updated to

w
(t−1)
i e−αtyift(xi){0.5+0.5ci[I(yi �=ft(xi))−I(yi=ft(xi))]}. (4)

In (4), if xi is misclassified by ft, its weight is increased,

otherwise it is decreased. Let β
(t)
i

.= 0.5 + 0.5ci[I(yi �=
ft(xi)) − I(yi = ft(xi))]. The parameter αt in (4) is deter-
mined for minimizing

n∑

i=1

D
(t−1)
i e−αtyift(xi)β

(t)
i , (5)

which can be done by line search. When all ci’s are identical
and approaches 0, AdaCost can then be reduced to AdaBoost.
AdaC{1, 2, 3}: AdaC1, AdaC2 and AdaC3 [8] assign cost
ci for misclassifying xi. They alter the weight update rule,
and computing method for αt. Due to their similarity, we
only consider AdaC1. Define ci as the misclassification cost
of the i-th example. The weight update rule for AdaC1 is

w
(t)
i = w

(t−1)
i e−αtyift(xi)ci , (6)

and αt is calculated for minimizing

n∑

i=1

D
(t−1)
i e−αtyift(xi)ci , (7)

which is approximate calculated as

αt =
1
2
ln

1+
∑

i:yi=ft(xi)
ciD

(t−1)
i −∑

i:yi �=ft(xi)
ciD

(t−1)
i

1−∑
i:yi=ft(xi)

ciD
(t−1)
i +

∑
i:yi �=ft(xi)

ciD
(t−1)
i

.

AsymBoost: Asymmetric boosting (AsymBoost) is based
on the statistical interpretation of boosting, which consider
the asymmetric misclassification cost of different classes. It
attempts to minimize

n∑

i=1

I(yi =1)e−c+yi
∑T

t=1αtft(xi)+I(yi =−1)e−c−yi
∑T

t=1αtft(xi),

(8)
where c+, c− are the misclassification costs for positive and
negative examples, respectively. When c+ = c− = 1, asym-
metric boosting is identical to LogitBoost [10], a generaliza-
tion of AdaBoost.

3. GRADIENT DESCENT COST SENSITIVE
BOOSTING

3.1. AdaBoost as Gradient Descent

AdaBoost can be viewed as an optimization procedure [2] for
minimizing

min
F∈F

Ê(e−yF (x)) = min
ft∈H,αt∈�

n∑

i=1

1
n

e−yi

∑T
t=1 αtft(xi). (9)

Let J(F) .= Ê(e−yF (x)). AdaBoost performs a forward gra-
dient descent procedure [2] to seek F for minimizing J(F):
in the k-th stage of AdaBoost, AdaBoost attempts to minimize

J(Fk−1 +αkfk) w.r.t. αk and fk where Fk−1 =
∑k−1

t=1 αtft.
For seeking αk and fk, AdaBoost incorporates an alternative
optimization technique:

2010

Step 1: Obtain the maximal descent direction fk at Fk−1,

fk = arg max
f∈H

−∂J(Fk−1 + αf)
∂α

|α=0

= arg max
f∈H

n∑

i=1

yiw
(k−1)
i f(xi). (10)

Since yif(xi) ∈ {+1,−1}, a rearrange of (10) leads to

fk = arg min
f∈H

D
(k−1)
i I(f(xi) �= yi), (11)

which indicates that fk can be obtained by minimizing

the training error under weights w
(k−1)
i .

Step 2: Seek the optimal αk along the descent direction fk:

αk = arg max
α∈�

J(Fk−1 + αfk). (12)

Note that J(Fk−1 + αfk) is convex with respect to α,
so J(Fk−1 + αfk) can be globally minimized when
dJ(Fk−1+αfk)

dα = 0, which is given by (2).

In each stage of AdaBoost, the main role of training ft is to
seek some descent direction in function space. The optimality
of ft is not a crucial requirement. Actually, in some scenar-
ios, ft is hard to globally minimize the training error under
current weights. For example, it is difficult to train a pruned
tree classifier which minimizes the training error. Once ft is
chosen, the descent of the surrogate function is determined by
the step size αt.

3.2. General Objective Function for CSB algorithms

To fit the CSB algorithms into a optimization procedure, it is
essential to identify their surrogate functions.
AdaCost: In the t-th stage, after ft is obtained, αt is deter-
mined to minimize (5). Therefore, ft can be viewed to serve
as a descent direction, and by (4-5), up to a scale of the weight
normalizer, AdaCost decreases the following objective func-
tion in the t-th stage,

n∑

i=1

w
(t−1)
i e−αtyift(xi)β

(t)
i =

n∑

i=1

w
(0)
i

t∏

k=1

e−αtyift(xi)β
(t)
i

=
n∑

i=1

w
(0)
i

t∏

k=1

e−αtyifk(xi)[0.5−0.5ciyifk(xi)]

=
n∑

i=1

w
(0)
i e−

∑t
k=1 αt·[0.5yifk(xi)−0.5ci]. (13)

AdaC1: Like AdaCost, it decreases the following objective
function in the t-th stage,

n∑

i=1

w
(t−1)
i e−αtyift(xi)ci =

n∑

i=1

w
(0)
i e−

∑t
k=1 αtyifk(xi)ci . (14)

AsymBoost: Unlike other CSB methods which heuristi-
cally modifying AdaBoost, AsymBoost is directly designed
to minimize (15). For the t-th stage, it decreases

n∑

i=1

I(yi =1)e−c+yi

∑t
k=1 αkfk(xi)+I(yi =−1)e−c−yi

∑t
k=1 αkfk(xi)

=
n∑

i=1

e−c+I(yi=1)yi

∑t
k=1 αkfk(xi)−c−I(yi=−1)yi

∑t
k=1 αkfk(xi).(15)

Since yi ∈ {±1}, c+I(yi = 1) and c−I(yi = −1) can be

unified with
c++c−

2 +yi
c+−c−

2 . Therefore, we can reformulate
(15) into

n∑

i=1

e−
∑t

k=1 αkyifk(xi)[
c++c−

2 +yi
c+−c−

2]. (16)

General Objective Function: A closer look at (13),(14)
and (16) share a common formulation

n∑

i=1

w
(0)
i e−

∑t
k=1 αk[aifk(xi)+bi], (17)

where ai, bi are related to the cost parameters and label infor-
mation. For example, for AdaCost, ai = 0.5yi, bi = −0.5ci.

3.3. Gradient Descent Cost Sensitive Boosting

The expression of objective function (17) is like AdaBoost.
Actually, it can also include AdaBoost as a special case when
ai = yi, bi = 0. Therefore, it is natural to employ the gradient
descent procedure of AdaBoost for minimizing (17). In the
t-th stage, since fk, αk, k = 1, · · · , t − 1 have been found
in previous stages, we can write the objective function (17)
by G(t−1)(ft, αt), a function of ft and αt. We develop the
following procedure for obtaining ft and αt, like (10) and
(12),

Step 1: Obtain the descent direction ft,

ft = arg max
f∈H

−∂G(t−1)(f, α)
∂α

|α=0 (18)

= arg max
f∈H

n∑

i=1

w
(0)
i e−

∑t−1
k=1 αk[aifk(xi)+bi]aif(xi).

For solving (18), assign each xi the pseudo-label ỹi =
sign(ai) and let w

(t−1)
i = |w(0)

i e−
∑t−1

k=1 αk[aifk(xi)+bi]ai|.
Then ft can be solving via minimizing the training er-
ror under weights w(t−1) and labels ỹi’s, like (10).

Step 2: Seek the optimal αt:

αt = arg max
α∈�

G(ft, α). (19)

Note that G(ft, α) is convex with respect to α, so
global optimal solution can at least be effectively cal-
culated by line-search methods such as bisection.

The major steps of the gradient descent process are presented
in Table 2.

2011

Table 2. Main Procedure of Gradient Descent CSB

Repeat for t = 1, 2, . . . , T :

(a) Train weak learner ft using weights w
(t−1)
i on the

training data (with pseudo-labels), minimizing (18).

(b) Compute αt by minimizing (19).

(c) Reweight: w
(t)
i = w

(t−1)
i e−αt[aift(xi)+bi].

4. EXPERIMENTS

To verify the effectiveness of our proposed gradient proce-
dure, we use four two-class medical diagnosis data sets taken
from the UCI Machine Learning Database [11] for experi-
ments. These datasets are suitable for cost sensitive learning
due to their class imbalance. These four data sets are: Breast
cancer data (Cancer), Hepatitis data (Hepatitis), Pima Indians
diabetes database (Pima), and Sick-euthyroid data (Sick). The
disease category is treated as the positive class, and the nor-
mal category is treated as the negative class. Since the objec-
tive functions of different CSB methods are diverse, we only
compare our algorithm with one of them, AdaCost, whose
objective function is (13).

Each dataset is randomly divided into two disjointed
parts: 90% for training and the remaining 10% for testing.
This process is repeated 20 times to obtain a stable average
result. C4.5 decision tree is used as base weak learner and the
iteration numbers (T) are set to 20. We use F-measure [12],
the weighted harmonic mean of precision and recall, for
evaluating the performance. The misclassification costs for
samples in the same category are set with the same value.
We fix the cost of the positive class to 1 and change the cost
item of the negative class from 0.1 to 0.9. The best (high-
est) F-measure of the cost settings are used for comparison.
Experimental results are given in Table 3. The F-measures
for AdaCost and the gradient procedure are close, which
indicates that the proposed procedure is suitable for cost sen-
sitive boosting, and more important, the procedure is able to
achieve comparable results with other CSB methods with the
same objective functions.

Dataset C4.5 AdaBoost AdaCost Gradient

Cancer 38.59 41.39 50.86 53.68
Hepatitis 48.81 57.44 65.81 64.28
Pima 60.65 61.32 66.57 69.84
Sick 87.23 86.17 87.33 86.46

Table 3. F-measure evaluation on the experimental results.

5. CONCLUSIONS

We have studied the procedure of cost sensitive boosting
methods, and found a general objective function for cost sen-

sitive boosting. We then propose a unified gradient descent
framework for optimizing this objective function. Experi-
mental results show that the proposed method can also be
used for cost sensitive learning tasks, and can serve as an
alternative for other CSB methods with the common objec-
tive functions. Like the gradient descent view for AdaBoost,
the proposed procedure is promising for developing new
algorithms and analyzing their properties.

6. REFERENCES

[1] R. Schapire, “A brief introduction to boosting,” Pro-
ceedings of the Sixteenth International Joint Conference
on Artificial Intelligence, 1999.

[2] L. Mason, J. Baxter, P. Bartlett, and M. Frean, “Boosting
algorithms as gradient descent,” in Advances in Neural
Information Processing Systems, 2000, vol. 12, pp. 512–
518.

[3] J. Friedman, “Greedy function approximation: A gradi-
ent boosting machine.” The Annals of statistics, vol. 29,
no. 5, pp. 1189–1232, 2001.

[4] P. Bickel, Y. Ritov, and A. Zakai, “Some theory for gen-
eralized boosting algorithms,” The Journal of Machine
Learning Research, vol. 7, pp. 705–732, 2006.

[5] P. L. Bartlett and M. Traskin, “Adaboost is consistent,”
in Advances in Neural Information Processing Systems,
2007, vol. 19, pp. 105–112.

[6] C. Elkan, “The foundations of cost-sensitive learning,”
Proceedings of the Seventeenth International Joint Con-
ference on Artificial Intelligence, 2001.

[7] W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan, “Ada-
Cost: misclassification cost-sensitive boosting,” in Pro-
ceedings of the Sixteenth International Conference on
Machine Learning, 1999.

[8] Y. Sun, M. S. Kamel, A. K. Wong, and Y. Wang, “Cost-
sensitive boostingnext term for previous termclassifica-
tionnext term of imbalanced data,” Pattern Recognition,
vol. 40, no. 12, 2007.

[9] H. Masnadi-Shirazi and N. Vasconcelos, “Asymmet-
ric boosting,” in Proceedings of the 24-th International
Conference on Machine Learning, 2007.

[10] J. Friedman, T. Hastie, and R. Tibshirani, “Additive lo-
gistic regression: a statistical view of boosting,” The An-
nals of Statistics, vol. 38, no. 2, pp. 337–374, 2000.

[11] C. Blake and C. Merz, “UCI repository of machine
learning databases,” 1998.

[12] P. Tan, M. Steinbach, and V. Kumar, Introduction to
Data Mining. Addison-Wesley, MA, USA, 2005.

2012

