
F-SVR: A NEW LEARNING ALGORITHM FOR SUPPORT VECTOR REGRESSION

Mireille Tohmé(1), Régis Lengellé(2)

(1) FORENAP Frp, 27, Rue du 4eme RSM , 68250 Rouffach, France
(2)ICD-LM2S (FRE CNRS 2848), Troyes University of Technology, BP 2060, 10010 Troyes cedex, France

ABSTRACT

In this paper, we present a new method for optimizing Support Vec-
tor Machines for regression problems. This algorithm searches for
efficient feasible directions. Within these selected directions, we
choose the best one, i.e. the one, coupled with an optimal step an-
alytical evaluation, that ensures a maximum increase of the objec-
tive function. The resulting solution, the gradient and the objective
function are recursively determined and the Gram matrix has not
to be stored. Our algorithm is based on SVM-Torch proposed by
Collobert for regression, which is similar to SVM-Light suggested
by Joachims for classifications problems, but adapted to regression
problems. We are also inspired by LASVM proposed by Bordes
for classification problems. F-SVR algorithm uses a new efficient
working set selection heuristic, ingeniously exploits quadratic func-
tion properties, so it is fast as well as easy to implement and is able
to perform on large data sets.

Index Terms— Training, algorithm, Support Vector Ma-
chines

1. INTRODUCTION

Over the past years, Support Vector Machine (SVM) have be-
come an important tool for solving pattern-recognition and
regression problems. Recently, Smola and Scholkopf [1] pro-
posed an iterative algorithm, called Sequential Minimal Op-
timization (SMO), for solving the regression problem using
SVM. Their decomposition algorithm used an analytical so-
lution for the subproblems, and they proposed to select two
pairs of variables as a working set. This algorithm is an ex-
tension of the SMO proposed by Platt [2] for SVM classi-
fication. Bordes [3] suggested LASVM which is a reorga-
nization of the SMO sequential direction search method and,
as such, converges to the solution of the SVM quadratic pro-
gramming problem. Collobert et al [4] used a decomposition
algorithm similar to the one proposed by Joachims [5]. They
suggested to select two variables instead of two pairs of vari-
ables as did Scholkopf and Smola. In fact, working with pairs
of variables would force the algorithm to do many compu-
tations with null variables until the end of the optimization
process. In this paper, we take advantage of the decompo-
sition method to present a new learning algorithm for solv-
ing regression problems. F-SVR relies on the following four
points:

1. The particular analytical expression of the equality con-
straint of the optimization problem

2. An efficient and new heuristic for selecting a possible
working set

3. The analytical determination of the optimal step-size
of the gradient algorithm which, coupled with the pre-
vious heuristic, is new within the context of SVM train-
ing

4. The analytical recursive computation of the solution,
the gradient and the objective function

The two last properties result from the quadratic nature of the
objective function, ensure the efficacy of F-SVR algorithm
andmake the differencewith traditional algorithms. We begin
this paper with a brief review of the basic technique used for
implementing Support Vector Machines for regression prob-
lems. Then we give an overview of F-SVR by introducing in
details its different steps. Section 4 presents the experimental
results and we finally conclude with some perspectives.

2. SUPPORT VECTOR REGRESSION

In this section, we concisely review the fundamentals of Sup-
port Vector Regression in the non linear case. As usual, sup-
pose we are given training data (x1, y1), · · · , (xN , yN) ⊂
X × R where X denotes the space of the input patterns, for
exampleR

d. In ε-SV regression [6], Vapnik introduced the ε-
insensitive loss function that enables sparsity within the Sup-
port Vectors (SV). Our goal is to find a function f(x) that has
at most ε deviation from the actually obtained targets yi for
all the training data, and at the same time is as smooth as pos-
sible. In other words, we do not care about errors as long as
they are less than ε, but will pay for any deviation larger than
ε. So we need to construct a regression function

f(x) =
〈
w, Φ (x)

〉
+ b w ∈ Φ(X), b ∈ R (1)

on a feature space F = Φ(X). Here, w is a vector in F , and
Φ(x) maps the input x to a vector in F . The w and b in (1)
are obtained by solving the following quadratic optimization

20051-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008

problem:

minimize
w,b,ξ,ξ∗

1
2 ‖w‖

2
+ C

N∑
i=1

(ξi + ξ∗i)

subject to

⎧⎨
⎩

yi −
(〈

w, Φ (x)
〉

+ b
)
≤ ε + ξi(〈

w, Φ (x)
〉

+ b
)
− yi ≤ ε + ξ∗i

ξi, ξ
∗

i ≥ 0, i = 1,, N

(2)

The constant C > 0 determines the trade-off between the
smoothness of f and the cost associated to deviations larger
than ε and ξ, ξ∗ are the usual slack variables. The optimiza-
tion problem (2) can be solved in dual form by introducing
the positive Lagrange multipliers α, α∗, η, η∗. We can write
the Lagrangian equation as follows:

L = 1
2 ‖w‖2 + C

N∑
i=1

(ξi + ξ∗i) −
N∑

i=1

(ηiξi + η∗

i ξ∗i)−

N∑
i=1

αi

(
ε + ξi + yi −

(〈
w, Φ (xi)

〉
+ b

))
−

N∑
i=1

α∗

i

(
ε + ξ∗i − yi +

(〈
w, Φ (x)

〉
+ b

))
(3)

When minimizing L with respect to the primal variables
(w, b, ξi, ξ

∗

i), the derivative has to vanish. It can be shown
that the dual variables ηi, η

∗

i are eliminated, so we obtain the
dual optimization problem:

max
α,α∗

W (α(∗)) = − 1
2

N∑
i,j=1

(αi − α∗

i)
(
αj − α∗

j

)
k(xi, xj)

−ε
N∑

i=1

(αi + α∗

i) +
N∑

i=1

yi (αi − α∗

i)

subject to

⎧⎨
⎩

N∑
i=1

(αi − α∗

i) = 0

αi, α
∗

i ∈ [0, C]
(4)

where α(∗) = (α1, . . . , αN , α∗

1, . . . , α
∗

N)T and k(xi, xj) =〈
Φ(xi), Φ(xj)

〉
. The estimate of the regression function at

any given point x is then:

f(x) =

N∑
i=1

(αi − α∗

i)k (xi, x) + b (5)

where b is computed by exploiting the Karush-Kuhn-Tucker
(KKT) conditions.

3. ALGORITHM DESCRIPTION

In this section, we present an overview of our proposed F-
SVR learning algorithm for Support Vector Regression. The
goal of the regression problem is to find the Lagrange multi-
pliers α(∗), solution of the optimization problem (4). To solve
this problem, we consider the particular analytical expression

of the linear constraint in (4). At least two components of
α and/or α∗ must be modified. We shall consider here the
simplest case where only two components will be updated.
Examining this linear constraint leads to four possible cases,
where λ > 0 is the only possibility to consider:

• case 1: αi ← αi + λ ; αj ← αj − λ

• case 2: α∗

i ← α∗

i + λ ; α∗

j ← α∗

j − λ

• case 3: αi ← αi + λ ; α∗

j ← α∗

j + λ

• case 4: αi ← αi − λ ; α∗

j ← α∗

j − λ

3.1. Searching for the best couple for each case (possible
working set)

For every case, the modification of the selected compo-
nents of α and/or α∗ is defined by a vector u(∗) =
(u1, . . . , uN , u∗

1, . . . , u
∗

N)T that has only two non-null com-
ponents equal to ±1. In [5], it has been proposed to select
the direction u(∗) in such a way that u(∗)T

g(∗) is maximum,
where g(∗) = (g1, . . . , gN , g∗1 , . . . , g

∗

N)T is the gradient of
the objective functionW (α(∗)). This is exactly what we use
here:

• case 1: (i1, j1) = argmax
i,j

(gi − gj) ⇔

i1 = argmax
i

(gi); j1 = argmin
j

(gj)

(ui1 = +1, uj1 = −1)

• case 2: (i2, j2) = argmax
i,j

(
g∗i − g∗j

)
⇔

i2 = argmax
i

(g∗i); j2 = arg min
j

(g∗j)

(u∗

i2 = +1, u∗

j2 = −1)

• case 3: (i3, j3) = argmax
i,j

(
gi + g∗j

)
⇔

i3 = argmax
i

(gi); j3 = argmax
j

(g∗j)

(ui3 = +1, u∗

j3 = +1)

• case 4: (i4, j4) = argmax
i,j

(
−gi − g∗j

)
⇔

i4 = argmin
i

(gi); j4 = argmin
j

(g∗j)

(ui4 = −1, u∗

j4 = −1)

Before any modification of α and/or α∗, we must verify that
the selected direction is feasible. A point α(∗) is feasible if it
satisfies all the constraints. A direction vector u(∗) is feasi-
ble, if there exists s > 0 such that α(∗) +su(∗) is feasible. We
must now take into account the inequality constraints. A di-
rection will be feasible if the corresponding Lagrangian mul-
tipliers are not still located on the boundaries defined by the
inequality constraints, so the search for the optimum direc-
tions defined previously becomes:

• case 1: i1 = argmax
i:αi<C

(gi); j1 = arg min
j:αj>0

(gj)

2006

• case 2: i2 = argmax
i:α∗

i
<C

(g∗i); j2 = argmin
j:α∗

j
>0

(g∗j)

• case 3: i3 = argmax
i:αi<C

(gi); j3 = arg max
j:α∗

j
<C

(g∗j)

• case 4: i4 = argmin
i:αi>0

(gi); j4 = arg min
j:α∗

j
>0

(g∗j)

3.2. Determination of the optimal step-size

Considering the quadratic nature of the objective function in
(4), W (α(∗)), it is actually easy to determine, for every case
considered previously, the optimal step-size of the gradient
algorithm. Given a direction u(∗), a feasible point α(∗) and in
the unconstrained case, the optimal step-size λopt is defined
by: λopt = argmax

λ

(
W (α(∗) + λu(∗))

)

λopt =
u(∗)T

∇W

u(∗)T Ku(∗)
(6)

where K denotes the Gram matrix (that is not used, see be-
low) and ∇W is the gradient ofW (α(∗)). The optimal step-
size of equation (6) can be written as:

• case 1: λopt1 =
gi1−gj1

ki1i1+kj1j1−2ki1j1

• case 2: λopt2 =
g∗

i2
−g∗

j2

ki2i2+kj2j2−2ki2j2

• case 3: λopt3 =
gi3+g∗

j3

ki3i3+kj3j3−2ki3j3

• case 4: λopt4 =
−gi4−g∗

j4

ki4i4+kj4j4−2ki4j4

As we can see from the calculation, we are only working in
dimension two. Now we have to verify that, after any modifi-
cation, the updated point remains feasible. An analysis of the
first case leads to:

{
αi1 + λopt1 ≤ C

αj1 − λopt1 ≥ 0
⇒ λopt1 ≤ min(C − αi1 , αj1)

If λopt1 > min(C − αi1 , αj1) the retained value is equal to
min(C − αi1 , αj1). A similar analysis for the other cases
gives:

• case 2: λopt2 ≤ min(C − αi∗2
, αj∗2

)
else λopt2 = min(C − αi∗2

, αj∗2
)

• case 3: λopt3 ≤ min(C − αi3 , C − αj∗3
)

else λopt3 = min(C − αi3 , C − αj∗3
)

• case 4: λopt4 ≤ min(αi4 , αj∗4
)

else λopt4 = min(αi4 , αj∗4
)

3.3. Selection of the optimal case

We have now to select the best case in some sense. In our
heuristic, that has been experimentally shown efficient, we
select the case corresponding to the greatest increase of the
objective functionW (α(∗)). Considering again the quadratic
nature of W (α(∗)), and after a few calculations, this incre-
ment is given by:

• case 1:
ΔW1 = −λopt1

N∑
k=1

(ki1k − kj1k) (αk − α∗

k)

− 1
2λ2

opt1
(ki1i1 + kj1j1 − 2ki1j1)

+λopt1 (yi1 − yj1)

• case 2:
ΔW2 = −λopt2

N∑
k=1

(ki2k − kj2k) (αk − α∗

k)

− 1
2λ2

opt1
(ki2i2 + kj2j2 − 2ki2j2)

+λopt1 (yi2 − yj2)

• case 3:
ΔW3 = −λopt3

N∑
k=1

(ki3k − kj3k) (αk − α∗

k)

− 1
2λ2

opt3
(ki3i3 + kj3j3 − 2ki3j3)

+λopt3 (yi3 − yj3) − 2ελopt3

• case 4:
ΔW4 = −λopt4

N∑
k=1

(ki4k − kj4k) (αk − α∗

k)

− 1
2λ2

opt4
(ki4i4 + kj4j4 − 2ki4j4)

−λopt4 (yi4 − yj4) + 2ελopt4

The accepted case is the one that maximizes the increment of
the objective function. We need to update the gradient of the
objective function. The component l, (l = 1, . . . , N) of the
gradient is updated according to:

• case 1: Δgl = −λopt1 (ki1l − kj1l)
Δg∗l = λopt1 (ki1l − kj1l)

• case 2: Δgl = λopt2 (ki2l − kj2l)
Δg∗l = −λopt2 (ki2l − kj2l)

• case 3: Δgl = −λopt3 (ki3l − kj3l)
Δg∗l = λopt3 (ki3l − kj3l)

• case 4: Δgl = λopt4 (ki4l − kj4l)
Δg∗l = −λopt4 (ki4l − kj4l)

3.4. Initialization

The gradient of the objective function is given by:

g = ∂W (α(∗))
∂α

= −K (α − α∗) − ε1N + y

g∗ = ∂W (α(∗))
∂α∗

= K (α − α∗) − ε1N − y

(7)

At the initialization we set the Lagrange multipliers α(∗) to
zero (feasible solution), then:

g = −ε1N + y

g∗ = −ε1N − y

and W (0) = 0 (8)

2007

3.5. Algorithm

F-SVR learning algorithm is resumed as follows:

1. Initialization.

2. Evaluation of the best direction, optimal step-size and
increment of the objective function for each case.

3. Selection of the case that maximizes this increment.

4. Update of the solution, the gradient and the objective
function.

5. Test for convergence, if not, return to step 2.

4. EXPERIMENTAL RESULTS

We compare now our F-SVR algorithm with an implementa-
tion of SVMLight for regression problems, only for learning
results comparison (no test data were used here). For SVM-
Light, we consider different sizes of the working set. The first
dataset is generated according to a noisy nonlinear model (see
Fig 1). For this first experiment, both algorithms are written
in MATLAB. Data are composed of 2000 observations of one
predictor and the corresponding response. For this dataset,
ε = 0.2, C = 10 and the gaussian kernel parameter σ is equal
to 0.3. Results are summarized in Table 1 where we evaluate
the training Normalised Mean Square Error NMSE1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 1. Simulated data (200 observations shown), SV are indicated by a circle

The second dataset (Census-house2) is concerned with
predicting the median price of a house using some demo-
graphic information. Data are composed of 20000 obser-
vations (with 121 attributes). We compare our F-SVR al-
gorithm to LIBSVM and SVMLIGHT3 for regression prob-
lems. All algorithms are here written in C. For this experi-
ment ε = 10−6, C = 1000 and σ = 100. Obtained results
are shown in Table 2.

1NMSE=
∑N

i=1(f(xi)−yi)
2∑

N
i=1(yi)

2

2http://www.cs.toronto.edu/ delve/data/census-house/
3http://www.csie.ntu.edu.tw/ cjlin/libsvm/, http://svmlight.joachims.org/

Time (sec) Working set NMSE
F-SVR algorithm 26.672 2 0.0048

199.125 2 0.024
218.750 4 -

SVMLight 253.016 8 -
397.172 16 -
722.328 32 -

Table 1. Results comparison for simulated data

Time (sec) Working set NMSE
F-SVR algorithm 3742.99 2 0.0019
SVMLIGHT 5044.36 2 0.019
LIBSVM 5708.61 - 0.019

Table 2. Results comparison for Census-housing data

5. CONCLUSION

In this paper, we introduced a new learning algorithm for re-
gression problems. This algorithm is easy to implement and
does not require the storage of the Gram matrix. It efficiently
uses the nature of the constraints of the optimization problem
and properties of quadratic functions. We showed that this
algorithm is fast and efficient for training large data sets, as
proved our experiments. Development of an online version of
our algorithm is under investigation.

6. REFERENCES

[1] Smola A.J. and Scholkopf B., “A tutorial on support vec-
tor regression,” Statistics and Computing, vol. 14, no. 3,
pp. 199–222, 2004.

[2] Platt J.C., “Fast training of support vector machines using
sequential minimal optimization,” Advances in Kernel
Methods: Support Vector Learning, pp. 185–208, 1999.

[3] S. Weston J. Bottou L. Bordes A., Ertekin, “Fast kernel
classifiers with online and active learning.,” Journal of
Machine Learning Research (JMLR),, vol. 6, pp. 1579–
1619, 2005.

[4] Bengio S. Collobert R., “Svmtorch: Support vector ma-
chines for large-scale regression problems,” Journal of
Machine Learning Research, , no. 1, pp. 143–160, 2001.

[5] Joachims T., “Making large-scale support vector machine
learning practical,” Advances in Kernel Methods: Sup-
port Vector Machines, pp. 169–184, 1999.

[6] Vapnik V., The nature of statistical learning theory,
Springer, New York, 1995.

2008

