
DISCRIMINATIVE FEATURE SELECTION FOR HIDDEN MARKOV MODELS
USING SEGMENTAL BOOSTING

Pei Yin, Irfan Essa, Thad Starner, James M. Rehg

School of Interactive Computing, College of Computing
Georgia Institute of Technology, Atlanta, USA

ABSTRACT

We address the feature selection problem for hidden Markov mod-
els (HMMs) in sequence classification. Temporal correlation in se-
quences often causes difficulty in applying feature selection tech-
niques. Inspired by segmental k-means segmentation (SKS) [1], we
propose Segmentally Boosted HMMs (SBHMMs), where the state-
optimized features are constructed in a segmental and discriminative
manner. The contributions are twofold. First, we introduce a novel
feature selection algorithm, where the temporal dynamics are de-
coupled from the static learning procedure by assuming that the se-
quential data are piecewise independent and identically distributed.
Second, we show that the SBHMM consistently improves traditional
HMM recognition in various domains. The reduction of error com-
pared to traditional HMMs ranges from 17% to 70% in American
Sign Language recognition, human gait identification, lip reading,
and speech recognition.

Index Terms— Time-series, Pattern Recognition, Feature Ex-
traction, Hidden Markov models

1. INTRODUCTION AND RELATED WORK

The ability of hidden Markov models (HMMs) to compensate for the
variance in length of temporal sequences leads to good performance
in speech processing, gesture recognition, DNA analysis, and other
applications. An HMM is normally estimated by Maximum Likeli-
hood Estimation (MLE). In practice, discriminative methods, which
simply learn a decision boundary, are usually superior for classifi-
cation than MLE. Previous attempts in introducing discriminative
methods to HMMs can be classified into two categories: discrimi-
native training of the model parameters and discriminative feature
selection. Discriminative variants of HMM parameter training, e.g.,
Minimum Classification Error (MCE), Maximum Mutual Informa-
tion (MMI) [2] and Conditional Maximum Likelihood (CML) crite-
ria directly adjust the model parameters for classification. A detailed
review and comparison can be found in Sha and Saul [3]. Previ-
ous studies [4, 5] indicate that discriminative features will be able to
improve discriminatively trained models: higher accuracy and effi-
ciency can be achieved by emphasizing the informative features and
filtering out the irrelevant ones. Therefore, selecting/extracting dis-
criminative features for HMMs has been a focus of attention [6, 7, 8,
9]. Our Segmentally Boosted HMM (SBHMM) technique belongs
to this category — our focus is to extract discriminative features for
the classification with explicit consideration of temporal correlation.

In machine learning, automatic feature selection is usually cast
as the optimization of a supervised classification problem. For x
being the evidence and y being the labels, the pair (x, y) defines
a classification problem y = f(x), and the discriminative features
are computed in order to minimize the classification loss. However,

ASLR ASLR Gait Lip Speech
(vision) (accelerometer) Recognition Reading Recognition

36.4%+ 17.1%+ 70.1% 32.2% 39.2%

Table 1. The reduction of error by the SBHMM compared to
the HMM baseline in the 5 experiments conducted in this paper.
ASLR=American Sign Language recognition.

there are two major difficulties in applying such feature selection
methods for time sequences.

First, sequential data do not observe the basic assumption of su-
pervised learning, i.e., that the samples are independent and identi-
cally distributed (i.i.d.). Time sequences contain significant amount
of temporal correlations (not independent sampling); some sequences
may also contain several “phases” (states), where the discrimina-
tive features for one phase may be quite uninformative for another
(not identically distributed). For instance, the sign “fish” in Amer-
ican Sign Language is expressed by moving the two hands asyn-
chronously. If the state can be clearly identified, for example in word
tagging [10] and video segmentation [11], conditional models such
as Conditional Random Fields (CRF) can be successfully applied to
perform sequential classification [12]. However, the meaning and
the labeling of the states are mostly unavailable in sequence clas-
sification [12]; for example, to recognize the sign “brother”, how
can the human labeler precisely supervise the training for the first
state when he does not even know the state’s meaning or how many
states comprise the sign? In such situations, SBHMMs provide a so-
lution to obtain similar discriminative classifiers in a unsupervised
manner. As we mention later, SBHMMs can be further modified to
facilitate iterative refinement of selected features using Baum-Welch
re-estimation.

Second, sequences are variable in length, though the learning
functions f(·) usually expect inputs x of fixed cardinality. The Fisher
kernel [13] and its variants use a generative model to preprocess
the sequences and construct a discriminative kernel according to the
fisher score (local gradient) of that generative model. The “feature
weighting” is encoded in the kernel matrix. The Fisher kernel has
been successfully applied to domains such as Bioinformatics. How-
ever its reliance on a potentially imperfect generative model can
cause problems.

Recently, Feature-space Minimum Phone Error (fMPE) [7] and
Stereo-based Piecewise Linear Compensation for Environments
(SPLICE) [6] produce good improvements in large vocabulary recog-
nition. They compensate input features with posterior-based “cor-
rection vectors” [5]. However they are relatively expensive to com-
pute in practice.

In this paper, we propose SBHMMs, which leverage both the dy-
namic nature of the sequential data and the static nature of the large-
margin feature selection methods by assuming “piecewise i.i.d.” (which
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Fig. 1. The key steps to SBHMMs.

does not introduce additional approximations, because it is already
assumed by HMMs). The key steps to our SBHMM technique are
illustrated in Fig. 1.

Our experiments show that SBHMMs reduce the sequence recog-
nition error by 17%-70% compared to HMMs in the application of
American Sign Language recognition, human gait identification, lip
reading and speech recognition (see Table 1, with details in Sec-
tion 4). SBHMMs construct new features by comparing the feature
value with a set of discriminatively chosen thresholds, which can be
efficiently computed.

2. SEGMENTAL BOOSTING

The idea of segmental training [1] was first introduced in the 1990s.
The motivation was to create a better initial estimation for the ob-
servation models. In this work, we extend the concept of segmental
training in order to perform discriminative feature selection. We de-
rive this strategy in the context of the first order HMM.

HMMs have been very successful in interpreting temporal data.
An HMM builds a causal model for observation sequence O =
(o1o2 · · · oT ) by introducing corresponding “hidden states” q =
(q1q2 · · · qT ). Let P (q1) = P (q1|q0). The transition model is
P (qt|qt−1) and the observation model is P (ot|qt). Assuming that
there are C types of sequences, recognition selects the one with the
highest likelihood c∗ = argmax1≤c≤C P (O|λc), and Λ =
{λ1, λ2, · · · , λC} are the parameters of the HMMs.

For a type c sequence Oc with length Tc, we define the model
distance (dissimilarity) [2] as

D(λc, Λ) =
1

Tc
[log P (Oc|λc) − 1

C − 1

∑
v �=c

log P (Oc|λv)].

We intend to choose a subset of features that maximize D(λc, Λ).
Assuming an uninformative prior, it is equivalent to maximizing the
“sequence margin”

M(λc, Λ) =
1

Tc
[log P (λc|Oc) − 1

C − 1

∑
v �=c

log P (λv|Oc)].

Discriminative classifiers with logistic output, such as boosting
H(x) =

∑
j αjhj(x) = log P (y = y∗|x) − log P (y �= y∗|x), are

capable of maximizing such a margin for the classification problems
(x, y).

There are three natural choices for (x, y) representing differ-
ent granularity: (x = O, y = c), (x = ot, y = c) and (x =
ot, y = qt). The first one is intractable since the length of the ob-
servation O varies. The second corresponds to the sliding window
methods [12] with fixed [8] or empirically determined [14] size. Al-
though improved results are reported, the oversimplified assumption
limits its application to more complicated tasks where “the static fea-
tures tend to cluster...without dynamic information” [9]. Therefore,
the sequential dependency between the sliding windows, which con-
veys important information for recognition, can not be neglected.

To respect the temporal dependency while staying tractable, we
argue that the samples inside every classification problem should be
least correlated while preserving the temporal relationship between
the problems (piecewise i.i.d.), i.e., assign (x = ot, y = qt). The
idea is to decouple discriminative feature selection from the temporal
dependencies, instead of discarding this information. The derivation
follows the HMM’s assumption on Markov property and conditional
independence without introducing additional independence assump-
tions:

P (O|λc) =
∑

q
P (O|q, λc)P (q|λc)

=
∑

q

T∏
t=1

P (ot|qt)P (qt|qt−1)

So M(λc, Λ) can be increased with some discriminative P (ot|
qt). The intuition is that HMMs decompose the evolving tempo-
ral trajectory into two types of behavior (1) loop within the same
state, or (2) transition from one state to another. Thus, we can
perform feature selection only in the segments of the same state,
and those “static” segments are connected by the temporal transition
P (qt|qt−1). Note that the concept of “hidden state” is still necessary
to smooth the results of the observation model.

Therefore, we first train a set of HMMs with the original fea-
tures, and label every observations ot by its maximum a posteriori
(MAP) state st computed by Viterbi decoding. Then we train a set
of AdaBoost ensembles {H(s)} for such labeling. We ignore the
superscript s when there is no ambiguity.

3. CONSTRUCTION OF THE NEW FEATURES

3.1. Data Aggregation by AdaBoost

AdaBoost linearly combines the weak learners hj(xi) ∈ [−1, 1]
to obtain a strong classifier (ensemble) H(x) =

∑
j αjhj(x) for

each class s (state). The weak learners h used in SBHMMs are the
decision stumps like “is the value of feature No.5 greater than 0.45?”
The binary answers are then weighted according to their empirical
discriminative power in separating class s from the other classes.

The margin of the ensemble with l weak learners at xi is de-

fined as ml(xi) = yiHl(xi)
wl

, while wl =
∑l

j=1 αj is the sum of

the learner weight, served as a normalization factor. During the Ad-
aBoost training, the minimum margin mini {ml(xi)} tends to in-
crease [15], which leads to good generalization ability.

As the training proceeds, the average margin tends to decrease.
The average margin of AdaBoost at round l is defined as

ml =

n∑
i=1

yiHl(xi)

n·wl
=

n∑
i=1

yi

[
l∑

j=1
αjhj(xi)

]

n·
l∑

j=1
αj

=

l∑
j=1

n∑
i=1

αjhj(xi)yi

l∑
j=1

n∑
i=1

αjy2
i

Denote

A =
l∑

j=1

n∑
i=1

αjhj(xi)yi, B =
l∑

j=1

n∑
i=1

αjy
2
i

C =
n∑

i=1

αl+1hl+1(xi)yi, D =
n∑

i=1

αl+1y
2
i

We have the average margin of round l and round l + 1

ml =
A

B
, ml+1 =

A + C

B + D
where

ml+1 � ml ⇔ A + C

B + D
� A

B
⇔ C

D
� A

B
In practice, “<” happens much more frequently than the other two
cases, considering that (1) A/B is the classification loss of the en-
semble composed by l weak learners, while C/D is the loss of one
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weak learner at l + 1 (2) AdaBoost gradually focus on the “harder”
examples [15]. Therefore ml will decrease as training proceeds.
This effect can be observed from the margin distribution graph in
Schapire et al. [15].

The increase of the minimum margin and the decrease of the
average margin indicates that boosting generates a natural clustering
of data in its output space according to their labels [11].

3.2. The Discriminative New Feature Space

SBHMMs use boosting ensembles to construct a new feature space
V . We define V as the output space spanned by the S ensembles
V = (H(1), · · · , H(S)), where S is the total number of the classes

(states). For example, boosting constructs two ensembles H(1) and
H(2) corresponding to a two-class problem. Suppose the outputs of
the ensembles are H(1)(x) = 0.2, H(2)(x) = 0.7 for x, then x is
projected to coordinate (0.2, 0.7) in V . Note that (1) this projection
is nonlinear because the ensemble is a combination of the nonlinear
thesholding functions on the feature values, and (2) the standard di-
mensionality reduction methods such as PCA can be applied to V to
further improve efficiency.

The intuition of using V as the new feature space is twofold (1)
the composition of the ensembles (weighting of weak learners) con-
tains important information about discrimination (2) the aggregation
of the samples in V refines the data distribution to fit the Gaussian
observation model. Our tests show that the original data is hyper-
leptokurtic (high kurtosis), which requires a dense mixture of Gaus-
sians. After the nonlinear projection by SBHMMs, the distribution
become more Gaussian in the new feature space, and the data kur-
tosis is reduced by 70%. The training of the (mixture of) Gaussian
observation models is in turn improved.

4. EXPERIMENTAL RESULTS

We evaluate the performance of SBHMMs across four domains and
compare it with the results reported previously by other researchers.
Note that the size of boosting ensembles are empirically determined
for each application.

4.1. American Sign Language Recognition Results

In the application of American Sign Language recognition (ASLR),
we compare SBHMMs with two baseline HMMs 1 [16, 17]. In the
first continuous recognition experiment, 500 sentences of 40 differ-
ent signs are performed by one subject in five-sign phrases. 16 fea-
tures including the position, velocity and the size of the two hands
are computed from a color-based hand tracker. We choose the same
400 sentences for training and 100 sentences for testing as the origi-
nal researchers [16]. 4-state HMMs are used for recognition. In the
second experiment, accelerometers mounted on a glove, elbow, and
shoulder provide 17 features such as wrist rotation and hand move-
ment [17]. This dataset contains 665 sentences with 141 different
signs. We use 3-state HMMs on this dataset with 10-fold cross-
validation.

The experimental results are listed in Table 2. Despite the high
accuracy of the original HMM baselines, SBHMMs are able to re-
duce the error rate by about 20% on both datasets, with or without
postprocessing by grammar. SBHMMs assign heavy weights on fea-
tures like the rotation of the wrists, which is considered meaningful
by sign language experts.

1Both datasets are available at http://wiki.cc.gatech.edu/
ccg/projects/asl/asl.

with grammar without grammar

error HMM SBHMM reduction HMM SBHMM reduction

vision 2.2% 1.4% 36.4% 3.2% 2.0% 37.5%

accel. 2.2% 1.8% 17.1% 4.9% 3.8% 22.4%

Table 2. Comparison of the test error on vision-based ASLR (top)
and accelerometer-based ASLR (bottom)

Total Length 30m45s Sampling Rate 120Hz

Training Data 24m42s Testing Data 06m03s

Total Sentences 275 Total Phones 8468

Total Phonemes 39 Total Samples >200,000

Table 4. Georgia Tech Speech Reading Database

4.2. Human Gait Identification Results

We compare SBHMMs with human gait recognition results previ-
ously reported by Kim and Pavlovic [18]. In their paper, perfor-
mance of several cutting-edge discriminative training methods for
mixtures of Bayesian network classifiers such as CML are evaluated
using the gait data [19]. This dataset 2 consists of 9 trials of 15
subjects walking in 4 different speeds. The data record the 3D po-
sition of 22 markers on the subject at 120Hz. Exactly following the
authors’ convention, we obtain 180 subsequences for the five sub-
jects with various speeds. Each sequence contains 6 dimensional
feature vector describing the joint angle of torso-femur, femur-tibia
and tibia-foot. 100 sequences are randomly chosen for training, and
the other 80 for testing. A 3-state HMM with single Gaussian is
used to identify the subjects. The test error averaged over 10 ran-
dom training/testing splits is reported in Table 3. It shows that the
SBHMM outperforms all the other 6 algorithms, and the reduction
of the test error ranges from 14% (MixCML [18]) to 70% (HMM).

4.3. Audio and Visual Speech Recognition Results

We also test our SBHMM algorithm on Georgia Tech Speech Read-
ing Database 3 [8] with two tasks: lip reading [22] (visual feature
only) and speech recognition (acoustic feature only). The visual
features are 18 infrared trackers around the lip. Their 3D positions
are recorded at 120Hz. The audio features are the first 13 orders of
MFCCs [2] and their derivatives, computed at 120Hz from a 16kHz
sound track. Since the goal is to illustrate automatic feature selec-
tion on the baseline HMM, we didn’t perform elaborate preprocess-
ing steps as most state-of-the-art speech recognizers do. The dataset
is described by Table 4. Both visual and acoustic recognition system
are naı̈vely implemented using 3-state HMMs with diagonal Gaus-
sians mixtures. Note that the visual phoneme is defined the same as
the acoustic phonemes. SBHMM reduces the test error by 30% com-
pared to HMM in Table 5. Table 3 and Table 5 also illustrate that, by
assuming piecewise i.i.d. instead of i.i.d. for the entire sequence,
SBHMM has higher accuracy than Boosted HMM (BHMM) [8],
which selects features using (x = ot, y = c).

In order to validate our approach, we compute the Generalized
Rayleigh Quotient [23] (the ratio of the interclass variance and the
intraclass variance) on Georgia Tech Speech Reading dataset. The
higher generalized eigenvalue of the quotient reflects the better sep-
arability of the data. SBHMMs manage to obtain an order of mag-
nitude higher generalized eigenvalue than traditional HMM, which

2The dataset is available at ftp://ftp.cc.gatech.edu/pub/
gvu/cpl/walkers/speed_control_data/.

3The dataset is available at http://www.cc.gatech.edu/cpl/
projects/speechreading/index.html.
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1-NN DTW HMM BML [20] MixCML [18] BoostML [21] BHMM [8] SBHMM

8.38±3.68% 11.50±4.78% 10.13±3.61% 4.00±3.48% 11.87±5.11% 5.93±6.64% 3.44±1.43%

Table 3. Comparison of test error on Georgia-Tech Speed-Control Gait dataset. The first 5 columns are directly from [18]

HMM BHMM [8] SBHMM

Visual 50.36% 42.56% 34.16%
Acoustic 32.30% 26.54% 19.65%

Table 5. Comparison of the test error on visual lip reading (top) and
acoustic speech recognition (bottom).

illustrates the effectiveness of the discriminative feature space.

5. CONCLUSION AND FUTURE WORK

In this paper, we presented a segmental boosting algorithm to per-
form discriminative feature selection for time sequences. Assum-
ing piecewise i.i.d. segments corresponding to HMM state bound-
aries, SBHMM constructs a new discriminative feature space. Ex-
periments on various applications illustrate that SBHMM achieves
up to 17%-70% reduction of error compared to HMM; SBHMM is
also compared favorably with many other HMM-based discrimina-
tive methods such as BHMM.

If we view the discriminative learning as a logistic regression [24]
of the posterior probability, the global convergence of SBHMM can
be achieved in an EM manner. The proof generally follows that in
Juang and Rabiner [1], and the details are omitted due to the space
limit.

Although the derivation and experiments in this paper are per-
formed using HMMs and boosting, they can be generalized to other
Markovian models and other discriminative algorithms. In the fu-
ture, we are interested in integrating segmental feature selection tech-
niques with segmental discriminative training in more challenging
gesture recognition tasks.
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