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ABSTRACT 

Many linear dimensionality reduction (LDR) methods, such 
as PCA and LDA, can be reformulated in the framework of 
graph embedding (GE). In this framework, those LDR 
methods are differentiated by values of edge weights of a 
graph. This paper first proposes a linear dimensionality 
reduction method, which assigns edges with discriminant 
adaptive weights. Specifically, we compute a local decision 
hyper-plane by using support vector machine (SVM). Then 
edge weighs corresponding to the local region are expressed 
as a function of the angle between the direction of the edges 
and the normal vector of the hyper-plane. Experimental 
results demonstrate the advantages of this proposed method. 

Index Terms— Graph embedding, edge weights 

1. INTRODUCTION 

Dimensionality reduction is effective to deal with the case 
of curse of dimensionality (i.e., the exponential growth of 
hyper-volume as a function of dimensionality). It can also 
result in faster classifier and less storage [9]. Widely used 
linear DR algorithms include principal component analysis
(PCA) [3], linear discriminant analysis (LDA) [4] and 
Nflsapce [17]. Powerful nonlinear reduction methods have 
emerged in recent years. Locally linear embedding (LLE) 
[5], ISOMAP [6], and Laplacian eigenmap [7] stand as the 
representative ones, which are also called manifold learning 
algorithms. In spite of effectiveness for extract nonlinear 
features, they cannot give analytic transformation functions. 
Though Bengio et al. [16] propose to deal with this out-of-
sample problem by formulating some manifold learning 
algorithms as a variant of kernel PCA (KPCA), and their 
computation cost is much larger than that of linear methods, 
e.g., PCA, LDA. In this paper, we focus on linear cases. 

Different linear feature extraction methods are derived 
by different objective function. PCA seeks a subspace that 
best represents the data in the sense of mean-square error. 
Utilizing discrimination criterion, LDA defines a projection 
that makes the within-class scatter small and the between-
class scatter large. Locality preserving projections (LPP) 
finds an embedding that preserves local information [8]. 
LPP is highly related to Laplacian eigenmaps: the former is 
the linear version of the latter. Both PCA and LLE try to 

represent data with lest mean square error. The differences 
are that PCA attempts to preserve the global geometry of the 
data while LLE attempts to preserve the local geometry.  

The above methods derived with different motivations, 
but they can be reformulated in a unified framework: graph 
embedding (GE) [1][2]. GE consists of three steps: 1) build 
a weighted graph, 2) derive a matrix from the weighted 
graph, and 3) compute the eigenvectors of the matrix. The 
graphs of LLE, Laplacian eigenmpas, Isomap, and LDA are 
sparsely connected, but the graph of PCA is fully connected. 
The edge weighs of PCA are identical. For LDA, the 
training points belonging to the same class are connected 
while the pairs of points belonging to different classes are 
not connected at all.  

The sparseness of LDA’s graph makes LDA outperform 
PCA in most cases in the sense of classification accuracy. 
The intra-connection and extra-disconnection properties 
indicate that LDA utilise the information carried by the class 
labels. However, the edge weighs of one class equal to those 
of any other classes. It is assumed that edges should be 
weighted according to the decision boundary so that the 
generalisation ability can be greatly enhanced. In this paper, 
the proposed method is named DAWGE, which stands for 
discriminant adaptive edge weights for graph embedding.

It is not easy to find exact decision boundary in either 
original data space or in low dimensional feature space, 
while we can estimate the piecewise boundary in a small 
local region. The boundary may not always be correct. 
However, if the estimated local boundary is not too far away 
the true one, it can give a useful guideline for designing the 
edge weights.  

The rest of this paper is organised as follows: Section 2 
briefly describes graph embedding framework, and shows 
the value of edge weights of PCA, LDA, and Laplacian 
eigenmaps. The proposed method (DAWGE) is reported in 
Section 3, and Section 4 gives experimental results. Section 
5 concludes the paper. 

2. GRAPH EMBEDDING 

In pattern recognition system, dimensionality reduction can 
not only reduce the computational cost but also improve the 
classification accuracy. Graph embedding is a general 
framework for dimensionality reduction [1][2]. Many 
subspace learning algorithms such as PCA and LDA can be 
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reformulated in this framework. In this section we briefly 
describe graph embedding which is the basis our method. 

Let X=[x1,x2,…,xN] be an input matrix with N being the 
number of samples and D being the dimensionality the 
samples. Each sample vector xi belongs to one of the C
object classes {X1,…,XC}, and l(xi) is the class label for xi.
The linearisation of graph embedding aims to find a D by d
transformation matrix U=[u1 u2 … ud] so that xi can be 
mapped to new point yi by T

i iy U x .
Let G={X,W} be an undirected weighted graph with 

vertex set X and the weight matrix W. In the framework of 
graph embedding, the weight matrix W is computed in 
different ways for different embedding algorithms. Given 
the matrix W, all the algorithms compute the diagonal 
matrix D with its elements ii ijj

d w  where ijw is the ij -

th entry of W, and then compute the Laplacian matrix L
using L=D-W. The goal of the linearisation form graph 
embedding is to find the optimal transformation matrix         

* 2arg min || ||i j ijw
U

U Ux Ux .                        (1) 

In (1), ijw  is usually chosen such that nearby points in D

can be mapped to nearby in the subspace spanned by U.
The objective function of the linearisation form of graph 

embedding can be reduced to the following minimisation 
problem [1]: 

* min ( )
T T

T

T T

z
or z

tr
U XBX U

U U

U U XLX U ,                           (2) 

where UTXBXTU=z and UTU=z are proper constraints.  
For LDA, the Laplacian matrix L equals to  

1

1 T
C

c c

c cN
L D W I e e ,                             (3) 

where the diagonal matrix D=I (I stands for the identity 

matrix), the weight matrix
1

1 T
C

c c

c cN
W e e , and ec is an N

dimensional vector with ec(i)=1, if c=l(xi); 0, otherwise. 
Specifically, the element of the W is

1/ ( ) ( )
0

c i j
ij

N if l l c
w

otherwise
x x

 .                    (4). 

From (4) one can see that the graph of LDA is sparsely 
connected: the training points belonging to the same class 
are connected while the pairs of points belonging to 
different classes are not connected at all (i.e. their edge 
weights equal to zero). 

For PCA, the Laplacian matrix L equals to 
1 T

N
L D W I ee ,                                 (5) 

where D=I, 1 T

N
W ee , and e is a summing vector with all 

its N elements being 1. Therefore, the edge weights wij of 
PCA equal to 1/N for any i and j. This means that the graph 
of PCA is fully connected and the edge weighs are identical. 

3. ALGORITHM 

3.1. Motivation 
In the above section, we have introduced how the edge 

weights of PCA and LDA are computed. One can conclude 
that how the graph is connected and how the value of edges 
weights is given play an important role in the dimensionality 
reduction researches and applications.  

Then a question should be answer: which the best 
edges weights for classification task. We attempt to develop 
a novel scheme to assign weights to the edges such that 
better classification accuracy can be obtained. It is assumed 
that the edges should be weighted according to the decision 
boundary (separating hyper-plane).  

Specifically, the edge weight stage is monotonically 
decreasing with the angle between the normal vector of the 
separating hyper-plane and the edge under consideration. 
The motivation of this strategy is is inspired by the work by 
Hastile et al. in [10] and by Peng et al. in [11][12] which we 
will describe as follows. Their methods are variants of 
classical nearest neighbor classifier and do not focus on 
feature extraction and dimensionality reduction. 

In [10], Hastile et al. have proposed a novel classifier: 
discriminant adaptive nearest neighbor (DANN). DANN 
determines the local decision boundaries from centroid 
information, and then shrink neighborhoods in directions 
orthogonal to these local decision boundaries, and elongate 
them parallel to the boundaries. Domeniconi et al. [12] and 
Peng et al. [11] proposed another local feature weighting 
scheme. They utilise local support vector machine (SVM) to 
estimate an effective metric for producing neighborhoods  - 
elongated along less discriminant feature dimensions and 
constricted along most discriminant ones. Domeniconi et al.
[12] have proved that this method increases the margin in 
the weighted space where nearest neighbor classification 
takes place. As a result, generalisation ability is enhanced. 
The algorithm is named as LAMANNA. 

We adopt the advantages of the above ideas to graph 
embedding based feature extraction.  

By feature weighting in a local region, both DANN 
and LAMANN shrink neighborhoods in directions 
perpendicular to local decision boundaries, and elongate 
them parallel to the boundaries. We mimic the process by 
assigning large weight value to the edge of the graph whose 
direction is orthogonal to the local decision boundary and 
by assigning less weight value to the edge whose direction 
is parallel to the local decision boundary. Specifically, the 
edge weight is monotonically decreasing with the angle 
between the normal vector of the decision boundary and the 
edge under consideration. From (1), we can see that the less 
the ijw , the smaller the distance between iUx  and jUx .
Take intra-connection and extra-disconnection properties 
into account, the net effect of our weighting is that the intra-
distances are shrunk along the local boundaries and the 
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extra-distances are elongated consequently. It is expected 
that this will lead to better generalisation ability of the 
resulting low-dimensional features. 

It is difficult to find exact decision boundary in either 
original data space or feature space (lower dimensionality 
than the original data space) which is one of the most 
important goal for classification. But we can estimate the 
piecewise boundary in a small local region (neighbors of 
one sample). The boundary may not always be correct. 
However, if the estimated local boundary is not too far away 
the true one, it can give a useful guide for designing the 
edge weights. 

Fig. 1(a) illustrates a possible weight-assigning sample 
that embodies our idea. Note how the weight varies with the 
angle between its edge and the normal vector of the local 
decision boundary. For comparison, we show the edge 
weights of LDA in Fig. 1 (b), where the edge weights of the 
same class are equal everywhere. 

3.2. The proposed method 

Formally, the proposed method can be stated as follows. 
Suppose class c is concerned which has Nc training points 
Xc=[x1 … 

cNx ] with l(x1)=l(x2)=…l(
cNx )=c, where l(xi)

represents the class label of xi. We find K nearest neighbors 
for class c. Denote cX the set of these neighbors. For cX ,
its elements xi and xj satisfy l(xi) c and l(xi) c. We can 
regard this problem as two-class problem with class c and 
non-c, i.e. c .

By using linear support vector machine (SVM) [13], we 
can obtain the separating hyper-plane that separates class c
and c . Let v be the normal vector of the hyper-plane. Then 
we define the edge weight wij (where l(xi)= l(xj)=c) as

( , )

cos ( , )

ij i j

i j

w f v x x

v x x
i,j=1,…,Nc and i j,            (6) 

where i jx x  stands for the vector formed by point xi and xj,

0 ( , )i jv x x  is the angle between v and i jx x , and f is 

a monotonically decreasing function with respect to the 
angle value. The cosine function in (6) is a possible instance 
of f.

From the above formula one can find that the larger the 
angle between v and i jx x  is, the larger the wij is. Thus (6) is 
consistent with the idea mentioned in subsection 3.2. Note 
that the function f in (6) is only one possible form and it can 
be taken in other forms. However, we do not focus on the 
optimal form of the function f in this paper. 

Then, we let the diagonal elements of W are 

( ) ( )
1

i j

ii ij
l l

i j

w w
x x

,                                        (7) 

which guarantees that 1ii ij
j

d w  (dii is the diagonal 

elements of the matrix D). Refer to Section 2 for graph 
embedding. 

According to the theory of graph embedding (see 
Section 2), we can get the Laplacian matrix L=D-W. By 
using the simplest constraint uTu=1, (2) can be reformulated 
as

* min ( )
T

T Ttr
U U I

U U XLX U                               (8) 

where u and U are defined in Section 2. 
The solution to (8) can be found by solving the following 
eigenvalue problem: 

i i iLu u                                                    (9) 
with 1< 2< < d.

Having obtained the transformation matrix U=[u1 u2 … 
ud], we can extract the features of xi by T

i iy U x . Finally, 
the nearest neighbor classifier is employed for pattern 
recognition. 

The proposed discriminant adaptive edge weights for 
graph embedding method is abbreviated as DAWGE.

4. EXPERIMENTAL RESULTS 

The AR face database [14] and FERET [15] face database 
were used to evaluate the proposed method (DAWGE), PCA 
and LDA. In our experiments, all the images were cropped 
based on the centres of eyes and resized to 42 42 pixels. 
They were normalized to have zero mean and unit variance. 
The parameters of each method are chosen so that it can 
approach its best performance. The nearest neighborhood 
classifier is adopted in the experiments.

Fig. 1. Comparison of the proposed method with LDA. (a) The 
edge weights of DAWGE. (b) The edge weights of LDA 
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Fig.2 Example images from AR database (before normalisation )
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In the first experiment, 117 subjects were selected from 
a total of 126 subjects in the AR database. Only 14 non-
occluded images (see Fig. 2 for example) per subject were 
used. Seven images of each subject were randomly chosen 
for training and the remaining seven images were used for 
testing. The system is run 15 times to obtaine 15 different 
training and testing sets. The average recognition rates of 
PCA, LDA, and DAWGE, are 79.82%, 91.55%, and 
93.65% respectively. The results show that the proposed 
methods are significantly better than PCA and LDA. 

In the second set of experiments, a subset of the FERET 
database is used. The subset includes 1394 images of 197 
subjects with each of the subjects has 7 images (Fig. 3 
shows example images). It is composed of the images 
whose names are marked with two-character strings: “ba”, 
“bj”,”bk”,”be”,”bf”,”bd”, and “bg”. Three images of each 
subject were randomly chosen for training and the 
remaining four images were used for testing. We obtained 
15 different training sets and testing sets. The average 
recognition rates of PCA, LDA and DAWGE are 49.22%, 
67.30%, and 79.67% respectively. The proposed method is 
greatly superior to PCA and LDA. 

These experiments demonstrate that proper design of 
edge weights can improve the classification performance of 
the graph embedding.  

5. CONCLUSIONS 

This paper proposed discriminant adaptive edge weights for 
graph embedding (DAWGE) as an improved method of 
graph embedding. The novelty of the DAWGE method lays 
in the discriminant adaptive edge weights. As we know, the 
edge weights of PCA and LDA are merely associated with 
the number of training samples of either the overall classes 
or per class. While, the edge weights of the proposed 
method are computed based on the normal vector of the 
separating plane and thus they are adaptive to discriminant 
direction. The edges of a graph are weighted so that the 
relevant edges for classification are emphasized. Therefore, 
it is expected and then has been demonstrated in two sets of 
experiments that the proposed DAWGE method has better 
classification performance. In the future, the advantages of 
tensor techniques will also be studied [18][19]. 
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