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ABSTRACT
The present paper develops a decentralized expectation-maxi-

mization (EM) algorithm to estimate the parameters of a mix-

ture density model for use in distributed learning tasks per-

formed with data collected at spatially deployed wireless sen-

sors. The E-step in the novel iterative scheme relies on lo-

cal information available to individual sensors, while during

the M-step sensors exchange information only with their one-

hop neighbors to reach consensus and eventually percolate the

global information needed to estimate the wanted parameters

across the wireless sensor network (WSN). Analysis and sim-

ulations demonstrate that the resultant consensus-based dis-

tributed EM (CB-DEM) algorithm matches well the resource-

limited characteristics of WSNs and compares favorably with

existing alternatives because it has wider applicability and re-

mains resilient to inter-sensor communication noise.

Index Terms— Expectation-Maximization, Mixture, Dis-

tributed Estimation, Sensor Networks , Distributed Consensus

1. INTRODUCTION

Nonlinear maximum-likelihood (ML) and maximum a poste-

riori (MAP) estimation problems are challenging and abun-

dant in statistical modeling, classification and reconstruction

tasks appearing in widespread applications such as computer

vision, psychometrics, econometrics and computerized tomo-

graphy, to name a few. In addition to being sensitive to initial-

ization, gradient-based and Gauss-Newton iterative solvers

require first- and second-order derivatives of the ML or MAP

objective function, which may be impossible or computation-

ally prohibitive [1, Ch. 7]. However, in cases where the

underlying model exhibits a separable structure (e.g., when

the underlying probability density function (pdf) comprises a

finite mixture of densities), or when there are missing data

and/or unobservable parameters whose knowledge could aid

the estimation procedure, EM-based iterative estimators have

well documented merits because: (i) they are computationally
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affordable; and (ii) guarantee convergence to a local optimum

or a saddle point of the ML or MAP objective function [2].

Except for [3] and [4], existing batch and incremental al-

gorithms of the EM class rely on data that are assumed to

be available at a central processing unit. With the advent of

WSNs however, there has been a growing interest towards de-

centralized detection, estimation and classification schemes

for use in monitoring, surveillance and distributed learning

applications. For such applications, distributed expectation-

maximization (DEM) approaches are well motivated espe-

cially when the resultant algorithms have wide applicability,

yet are simple and adhere to the stringent processing and com-

munication constraints that resource-limited sensors are envi-

sioned to operate with. In the WSN context, [3] has reported

an incremental (I-) DEM scheme, while [4] has investigated

a gossip-based (G-) DEM alternative. Inter-sensor communi-

cation links are assumed noise free and both [3] and [4] are

confined to parameter estimation when the data pdf is mod-

eled as a finite mixture of Gaussian pdfs – a case where lo-

cal estimators are available in simple closed-form expressions

and sufficient statistics obtained locally can be updated across

sensors.

The present paper develops what is termed consensus-

based (CB-) DEM algorithm for nonlinear ML or MAP pa-

rameter estimation based on data collected across spatially

distributed sensors. The underlying data pdf is modeled as

a finite mixture of (not necessarily Gaussian) pdfs, and inter-

sensor links can be corrupted by additive (e.g., quantization

or receiver) noise. Similar to I-DEM [3], the E-step in CB-

DEM relies on local (per sensor) information. The key differ-

ence lies in re-formulating the M-step, where the average log-

likelihood of EM’s “complete data” is maximized. Specif-

ically, CB-DEM decomposes the M-step into a set of local

subproblems that individual sensors solve iteratively by com-

municating with their single-hop neighbors until global con-

sensus is reached across the entire WSN. Such a consensus-

based reformulation has been used recently to map central-

ized estimation criteria (other than EM) to equivalent criteria

amenable to distributed implementation; see [5] and the ref-

erences therein.

Without requiring closed-form expressions of local (i.e.,

per sensor) estimators in terms of sufficient statistics, the main

novelty relative to [3] is that CB-DEM lends itself naturally
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to a general distributed clustering scheme where class-condi-

tional pdfs are even allowed to be non-Gaussian. In addi-

tion, CB-DEM relies on “bridge sensors” (to be defined later)

which offer a more desirable tradeoff between robustness and

overhead when compared to the incremental looping through

all nodes required by I-DEM [3], and the redundant commu-

nications involved in G-DEM [4].

The rest of the paper is organized as follows. Modeling

preliminaries are given in Section 2. The centralized EM is

outlined leading to the development of the CB-DEM algo-

rithm in Section 3. Finally, simulated tests and comparisons

are presented in Section 4.

2. PRELIMINARIES

Consider a set J := {1, . . . , J} of J fully-connected sensors,

each (say thej-th) communicating with single-hop neighbors

in its neighborhood Nj ∈ J . Supposing that sufficiently

powerful error correcting codes are employed, links are con-

sidered error free. Node j records N independent data xj,n,

n = 1, · · · , N , assumed to be drawn randomly from a set

K := {1, . . . , K} of K classes. Let cj,n denote the class

label indicating from which class xj,n is drawn from. For

reasons that will become clear later, let cj,n be a K×1 vector

whose k-th entry cj,n(k) = 1 if xj,n was drawn from the k-th

class and zero otherwise. We clearly have K possible vectors

cj,n, one per class. Data belonging to class k are distributed

according to the pdf fk (xj,n; φk) parameterized by the de-

terministic but unknown vector φk. Let πj,k denote the prior

probability that data from the k-th class are drawn, which is

also unknown but is allowed to be different from one sensor to

another (thus the sub-index j). The pdf of (xj,n, cj,n) which

jointly describes a datum and its class label is

f (xj,n, cj,n) =
K∏

k=1

[πj,kfk(xj,n; φk)]cj,n(k)
(1)

where only one factor in (1) has exponent equal to 1 while

all other factors have exponent equal to 0 and thus do not af-

fect the product. Sensors do not know to which class each

xj,n belongs to; hence, the only ‘observable’ random vari-

able is xj,n. The pdf of xj,n is obtained by marginalizing

f (xj,n, cj,n) with respect to cj,n to obtain

f (xj,n) =
∑
cj,n

K∏
k=1

[πj,kfk(xj,n; φk)]cj,n(k)

=
K∑

k=1

πj,kfk (xj,n; φk) . (2)

Let θ := [ϕT ,πT ]T collect both global parameters ϕ :=
[φT

1 , . . . ,φT
K ]T and local ones π := [πT

1 , . . . ,πT
J ]T with

πj := [πj,1, . . . , πj,K ]T . Given data x := [x1,1, · · · , xJ,N ]T

distributed with pdf as in (2) across the WSN, the goal is to

have all sensors form an estimate θ̂ of the pdf parameters

θ. Once θ̂ is locally available, each sensor can construct a

rule for classifying future data, e.g., using the MAP or the

Neyman-Pearson criterion.

The (centralized) ML estimator of θ can be formulated as

the solution of the following optimization problem [cf. (2)]

θ̂
ML

= arg max
θ

N∏
n=1

J∏
j=1

(
K∑

k=1

πj,kfk (xj,n; φk)

)

s.t. 0 ≤ πj,k ≤ 1, ∀j ∈ J , k ∈ K
K∑

k=1

πj,k = 1.

(3)

As mentioned in the introduction, the limitations of gradient

and Gauss-Newton solvers, and the separable (with respect to

k) structure of the objective in (3) motivate the EM approach.

In its centralized form, EM hinges on the idea that, if the

class labels cj,n for each xj,n were known, the ML problem in

(3) would be easier. Specifically, instead of the observed xj,k,

consider the pdf of the partially observed (a.k.a. complete)

data (xj,n, cj,n), whose log-likelihood is given by

L(y,θ) =
N∑

n=1

J∑
j=1

K∑
k=1

cj,n(k) log [πj,kfk (xj,n; φk)] (4)

where y := [(x1,1, c1,1), . . . , (xJ,N , cJ,N )]T denotes the com-

plete data. The algorithm starts with an initial guess θ(0) to

build an estimate ĉ
(0)
j,n(k) of each class.

Given θ(i) at iteration i, the E-step estimates class labels

as ĉ
(i)
j,n(k) = E{cj,n(k)|x,θ(i)} = P [cj,n(k) = 1|x,θ(i)],

where the last equality holds because cj,n(k) is a Bernoulli

random variable. Application of Bayes’ rule yields the closed

form

ĉ
(i)
j,n(k) =

π
(i)
j,kf

(i)
k

(
xj,n; φ(i)

k

)

∑K
l=1 π

(i)
j,l f

(i)
l

(
xj,n; φ(i)

l

) . (5)

With ĉ
(i)
j,n(k) available, the M-step finds

θ(i+1) = arg max
θ

Ec

{
L(y,θ)|x,θ(i)

}
(6)

which is input to the E-step of iteration i + 1. Such iterative

passes of the E- and M-steps proceed until, for a prescribed

tolerance ε, the condition ||θ(i+1) − θ(i)|| < ε is satisfied.

3. THE CB-DEM ALGORITHM

In this section we develop the CB-DEM algorithm as an EM

optimization problem that can be solved in a distributed fash-

ion. To this end, it is useful to identify local and global vari-

ables needed at the E-step and M-step. The E-step in (5)

entails only local information, but requires θ(i) to be known
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from the previous M-step. In addition, the priors πj estimated

during the M-step can be locally estimated per iteration as the

average of the class labels; i.e.,

π̂
(i)
j =

1
N

N∑
n=1

ĉ(i)
j,n ∀j ∈ J . (7)

Note however, that ϕ is global. To estimate it across all sen-

sors, we will rely on a subset of nodes that we term bridge

sensors and denote as B. The bridge sensors will impose con-

sensus on the estimated parameters among the set of neigh-

boring (one-hop) sensors. Sufficient conditions to determine

the elements of B are given in [5]. Let ϕj denote the estimate

of ϕ at sensor j, whose k-th component is φj,k. Vector ϕj

together with the local πj comprise a local estimate of the

global parameter vector θ. If ϕ̄b denotes the estimate of ϕ at

a bridge sensor b, the CB-DEM estimate can be found as the

solution of the following optimization problem:

min
ϕj

−
J∑

j=1

Ec

{
Lc(y,θj)|x,θ

(i)
j

}

s.t. ϕj = ϕ̄b, j ∈ Nj , b ∈ B
0 ≤ πj,k ≤ 1, ∀j ∈ J , k ∈ K

K∑
k=1

πj,k = 1.

(8)

The constraint ϕj = ϕ̄b maintains consensus among global

parameters across the network ensuring that at the end of the

optimization algorithm ϕ1 = · · · = ϕJ = ϕ. The optimiza-

tion problem in (8) not only guarantees global consensus on

the optimal solution, but also ensures that the optimal solution

coincides with the centralized one [5].

The problem in (8) can be solved in a distributed fashion

using the alternating-direction method of multipliers (MoM)

[6, Ch. 3]. For that matter, we construct the augmented La-

grangian

L (x, {ϕj}J
j=1, {ϕ̄b}b∈B

)
=

−
J∑

j=1

N∑
n=1

K∑
k=1

ĉj,n(k) log
[
fk

(
xj,n; φj,k

)]

+
J∑

j=1

∑
b∈B

λb
j

(
ϕj − ϕ̄b

)
+

J∑
j=1

∑
b∈B

ξj

2

∥∥ϕj−ϕ̄b

∥∥2

2

(9)

where λb
j denotes the Lagrange multipliers corresponding to

the consensus constraint. The positive constants ξj are penalty

coefficients which can be tuned to tradeoff convergence speed

for steady-state error. Notice that the local variables ϕj , πj

and λb
j are stored per sensor, whereas the consensus variables

ϕ̄b are stored per bridge sensor. By combining the MoM with

the EM algorithm, we obtain the following result (proof is

omitted due to space limitations).

Proposition 1 With iteration index i, consider iterations

λ
b(i+1)
j = λ

b(i)
j + ξj

(
ϕ

(i)
j − ϕ̄

(i)
b

)
(10)

ϕ
(i+1)
j = arg min

ϕj

−
N∑

n=1

K∑
k=1

ĉj,n(k) log
[
fk

(
xj,n; φj,k

)]

+
∑
b∈Bj

λb
j

(
ϕj−ϕ̄b

)
+
∑
b∈Bj

ξj

2

∥∥ϕj−ϕ̄b

∥∥2

2
(11)

ϕ̄
(i+1)
b =

∑
j∈Nb

1∑
β∈Nb

ξβ

(
λ

b(i+1)
j + ξjϕ

(i+1)
j

)
(12)

along with the parameters c
(i)
j,n(k) and π

(i)
j estimated as in (5)

and (7), respectively, with j ∈ J and b ∈ B. Initializing with
π(0), {ϕ(0)

j }J
j=1, {ϕ̄(0)

b }b∈B, and {λb(0)
j }b∈Bj

the iterates in
(10)-(12) together with (5) and (7) converge to either a global
maximum, local maximum, or saddle point of the ML function
in (3).

Remark 1 Following the steps in [5], it is possible to prove

that Proposition 1 applies even when inter-sensor links are

noisy. This extension is ommited due to lack of space, but is

tested through simulations in Section 4.

The CB-DEM algorithm can be summarized as follows:

at iteration i, the CB-DEM algorithm begins when the bridge

sensors transmit their consensus variables ϕ̄b to all their neigh-

boring nodes. In particular, node j may receive consensus

variables from more than one node. Each node j proceeds to

calculate locally the current class labels ĉ
(i)
j,n(k) via (5), thus

completing the local E-Step for each sample taken per sen-

sor. Next, ĉ
(i)
j,n(k) is used to obtain π

(i+1)
j via (7). Each of

the Lagrange multipliers λ
b(i+1)
j at node j is updated using

(10) and subsequently used to find ϕ
(i+1)
j via (11). The sums

λ
b(i+1)
j + ξjϕ

(i+1)
j are sent back from each sensor j to their

corresponding neighboring bridge nodes where they are used

to compute ϕ̄
(i+1)
b via (12). Now the bridge sensors have

completed the i-th iteration and are ready to transmit again

their updated consensus variables to begin iteration i + 1.

Remark 2 The merits of CB-DEM relative to [3] and [4] are:

i) it does not require finding a, preferably minimal, path tra-

versing across all sensors; ii) it is robust to rounding errors

and additive noise present in inter-sensor communications (a

major limitation of [3] and [4]); iii) it only requires one-hop

connectivity among sensors; iv) it allows parallel processing

of the data per node; and, v) it does not require ϕ estimators

to be available in closed form and thus applies to general mix-

tures whose class-conditional pdfs are differentiable and (log)

concave.
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Fig. 1. Error mean comparison among FC-EM, I-EM with

SNR=20dB, CB-DEM with SNR=∞, 20dB, and 10dB.

4. SIMULATIONS

In this section, we test convergence of CB-DEM and compare

with [3] via simulations. We simulate a WSN with J = 27
nodes, each collecting N = 100 samples drawn from K = 3
classes whose class conditional pdfs are Gaussian with mean

and variance φk := [μk, σ2
k], k = 1, 2, 3. Zero-mean addi-

tive white Gaussian noise is present at every iteration. The

signal-to-noise ratio is defined as SNR:=10 log(ϕ2
Tmin/σ2

n),
where ϕ2

Tmin is the value of the smallest parameter in the true

ϕ and σ2
n denotes the noise variance. The penalty coeffi-

cients are set to ξj = 10. Parameters ϕ
(0)
j , π(0), and ϕ̄

(0)
b

are all initialized identically to those in the centralized EM.

Notice that for the same initialization, both centralized EM

and CB-DEM converge to the same estimate, thus demon-

strating that CB-DEM is a valid decentralization of the EM

algorithm. As error performance metric, we adopt e
(i)
norm =∑J

j=1 ||γ̂(i)(j) − γ true||/ ‖γ true‖, where γ true is the vector of

true mean or variance parameters, and γ̂(i)(j) denotes the cor-

responding estimate at node j in iteration i.
Once the parameters describing the class conditional dis-

tributions are specified, we construct a MAP classifier to sep-

arate new incoming data per sensor. At this point, the classifi-

cation task can be performed locally. Fig. 3 shows the classi-

fication results of a test data set once the parameters describ-

ing the class conditional pdfs have been learned. The two-

dimensional synthetic data come from three different classes

whose class-conditional pdfs are Gaussian. The classification

result coincides with that of the centralized MAP classifier

since the parameters found by CB-DEM coincide with those

of the centralized EM for this specific test.
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