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ABSTRACT

This paper develops implicit softmax transforms (IST) which
are dimensionality reducing transforms that are defined im-
plicitly by minimisation of a weighted sum of Kullback-Leib-
ler distances (WKL). The parameters of an IST are trained in
combinationwith the parameters of the polynomial exponents
of softmax functions. The resulting gradient of the WKL can
be efficiently calculated and the computational effort scales
well with the size of the training set. The paper compares
IST’s to PCA and LDA in classification experiments with
two different types of classifiers on three different datasets,
two of them from the UCI machine learning repository. It is
shown that IST’s outperform PCA and LDA in a majority of
the cases. In one case reducing the dimension with an IST
even gives an improvement over the high dimensional base-
line system.

Index Terms— Pattern recognition,multidimensional sig-
nal processing, information theory

1. INTRODUCTION

The methods employed for dimensionality reduction fall into
two major classes, namely feature selection [1] and the cal-
culation of transformations into a low-dimensional space. Al-
though the former represent a subset of the latter the approach
to feature selection differs considerably from the calculation
of dimension reducing transforms. In feature selection a com-
bination of the most valuable features of a high dimensional
data set is sought. On the contrary, dimensionality reducing
transforms are not required to leave the original features un-
changed and will, in general, produce transforms which com-
bine the original features. Among the methods for calculat-
ing dimensionality reducing transforms the most well known
are principal component analysis (PCA) [2], linear discrimi-
nant analysis (LDA) [2] and independent component analysis
(ICA) [3]. Another method is the one developed in [4, 5, 6],
where a transformation is trained by maximising the mutual
information between the transformed data and the class la-
bels.
The implicit softmax transform (IST) developed in this

paper is similar to the latter, as it also optimises an infor-
mation theoretic measure. Here, instead of maximising the

mutual information, however, a sum of weighted Kullback-
Leibler distances (WKL) between the true class probabili-
ties and the estimated ones is minimised. In contrast to the
method in [4, 5, 6], the computational effort for the calcula-
tion of the gradient of WKL scales well with the size of the
training set and IST’s can therefore be trained relatively easily
on large datasets.

2. IMPLICIT SOFTMAX TRANSFORMS

An implicit softmax transform (IST) T maps a data point x in
feature spaceX into a data point T (x) = y in another feature
space Y . In this paper T will be considered to be a linear
transform and is therefore given by a matrix T = (tij). In
order to optimise IST’s they are concatenated with softmax
functions and optimised together with the parameters of the
softmax functions. For N classes and a data point x from
feature space X , the concatenation of an IST T and softmax
functions Sn is given by

Sn(T (x)) =

⎧⎪⎪⎨
⎪⎪⎩

eqn(T (x))

1+
∑N−1

i=1 eqi(T (x))
: 1 ≤ n ≤ N − 1

1
1+

∑N−1
i=1 eqi(T (x))

: n = N

(1)
The qi(y) in (1) can, in principal, be any function of y, in this
paper, however, for computational reasons, only polynomials
in y will be considered. Therefore, the qi(y) can be written as
follows.

qi(y) =
∑

l

ci
ly

l (2)

Here l can be a multi-index if the dimension of y is greater
than one. The parameters to be trained are the coefficients
of the polynomials in (2), i.e. the ci

l , and the parameters of
the IST, i.e. the tij . The cost function to be optimized is
the sum over the weighted Kullback-Leibler distances (WKL)
between the Sn(T (x)) and the true probabilities pn(x) for x

to lie in class n, i.e.

WKL(p, S ◦ T ) =
∑

x

wx

N∑
n=1

pn(x) log
pn(x)

Sn(T (x))
(3)

whereS◦T denotes the totality of the concatenations of T and
the Sn(y) in (1). In (3) wx is a positive weight that specifies
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the importance of data point x. In this paper all points will be
considered to be of equal importance and the wx will there-
fore always be 1. In most classification tasks, a data point x
will be uniquely associated to one of the classes and the pn(x)
will therefore be 1 for the associated class and 0 otherwise.
The fact that T is implicitly defined together with the pa-

rameters of the softmax functions ci
l through optimisation of

WKL justifies the name implicit softmax transforms.
In the experiments in section 3 it was found to be of great

importance that the rows of the IST are orthogonal. For this
reason, a Gram Schmidt orthogonalisation was applied to the
rows of an IST after training. This can be done, if the expo-
nents qi(y) are polynomials, because for an arbitrary invert-
ible transform W on Y , qi(W

−1(y)) is again a polynomial
on Y and qi(W

−1(W (T (x)))) = qi(T (x)). For this reason
W ◦ T is associated to the same local minimum of WKL as
T .
In a gradient based optimisation method, such as quasi-

Newton, it is necessary to calculate the derivatives of WKL
with respect to the polynomial parameters ci

l and the trans-
form parameters tij . After some calculation, these can be
shown to be

∂

∂ci
l

WKL(p, S ◦T ) = −
∑

x

wx (pi(x) − Si(T (x))) (T (x))l

(4)
and

∂

∂tij
WKL(p, S ◦ T ) =

−
∑

x

wx

N−1∑
n=1

(pn(x)− Sn(T (x)))
∂

∂yi

qn(T (x))xj (5)

Equations (4) and (5) show that the computational cost of cal-
culating the gradient of WKL scales linearly with the size of
the training set and the number of classes. It also scales lin-
early with the dimension of X and Y and the degree of the
polynomials qi(y), since the powers of the individual dimen-
sions can be reused to calculate the multidimensional powers
in (4) and (5). In comparison to the calculation of the gradi-
ent of the WKL cost function the method in [4, 5, 6] scales
quadratically with the size of the training set. For this rea-
son the experiments in [4] had to be restricted to subsets of
the full training set of some of the databases of the UCI ma-
chine learning repository [7]. This was not necessary for the
experiments in section 3 which made use of the full training
sets.
Since the IST parameters tij are trained simultaneously

with the parameters of the polynomials qi(y), the degree of
these polynomials influences the resulting IST. This fact is il-
lustrated in Figure 1 which also highlights some differences
between LDA, PCA and IST. Figure 1 shows a simple two-
dimensional classification task. The 1000 randomly gener-
ated data points in the two classes are represented by circles
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Fig. 1. Lines of projection of PCA, LDA and IST’s for a
simple two-class problem.

and stars, respectively. The solid line in Figure 1 which al-
most coincideswith the x-axis is the line on which the data are
projected by an LDA transform and an IST where the polyno-
mial q1(y) has degree 3 or less. The dashed line which sub-
tends and angle of roughly 45 degrees with the x- and the y-
axis, and the dash-dotted line which is almost identical to the
y-axis are the lines on which the data are projected by a PCA
transform and an IST, respectively, where the IST was trained
with a polynomial q1(y) of degree 4 or more. This is the min-
imal degree to obtain a transform onto the y-axis since the
resulting decision boundary consists of 4 points on which the
q1(y) has to be zero. In this example the transform onto the y-
axis is clearly the best as it perfectly separates the two classes.
This example therefore shows the importance of choosing a
high enough degree for the polynomials qi(y) in order to ob-
tain an IST with optimal separation between classes. It should
be clear on the other hand that an unnecessarily high degree
of the polynomials qi(y) will lead to over-fitting and a subop-
timal IST. The optimal degree of the polynomials qi(y) has,
so far, to be determined experimentally.

3. CLASSIFICATION EXPERIMENTS

Classification experiments were carried out on two corpora
from the UCI machine learning repository [7], namely the
Landsat and Letter databases. In addition, the Phoneme clas-
sification task was used that is part of the LVQ PAK toolkit
[8]. These classification tasks have rather different character-
istics as can be seen in Table 1. LDA, PCA and IST trans-
forms were calculated on the training sets of these tasks. The
IST’s were derived by numerical minimisation of the WKL
cost function and subsequent orthogonalisation of the rows
by Gram-Schmidt. Numerical minimisation ofWKL was per-
formed with a quasi-Newton method and the help of the deri-
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classes dimension train. set test set
Letter 26 16 16000 4000
Landsat 6 36 4435 2000
Phoneme 20 20 1961 1961

Table 1. Classification task characteristics

vatives in (4) and (5). Five random initialisations were chosen
for each dimension of IST and each degree of the polynomi-
als qi(y). These were then trained a maximum of 1500 itera-
tions. Subsequently, the IST that gave the lowest value of the
WKL cost functionwas used in the classification experiments.
The PCA, LDA and IST were applied to both the training
and test sets. Subsequently two different types of classifiers
were trained on the transformed training sets and evaluated
on the transformed test sets. The two types of classifiers used
are support vector machines and learning vector quantisation.
These were trained with the publicly available toolkits SVM-
Torch [9] and LVQ PAK [8]. As the resulting LVQ depends
on the order in which the training data are processed, LVQ’s
were trained for 10 different random orderings of the train-
ing data. The average error rate for the 10 different LVQ’s
is presented here. Table 2 gives the classification error rates
in percent for the baseline systems where the LVQ and SVM
classifiers were trained and tested on the untransformed orig-
inal datasets. On the Letter, Landsat and Phoneme database

LVQ SVM
Letter 6.07 2.18
Landsat 9.86 8.05
Phoneme 9.61 8.97

Table 2. Classification error rates (%) for untransformed data

the LVQ classifier was trained with 4000, 1000 and 500 code
books, respectively. The SVM classifier used Gaussian ker-
nels throughout the experiments. In the case of the Letter
dataset the standard deviation of the Gaussians was chosen to
be 5. For the Landsat and Phoneme datasets, however, the
standard deviation of the Gaussians was varied continuously
between 5 and 100 and the classifier with the best perfor-
mance was chosen. This was done since the optimal standard
deviation varied considerably with the dimension and type of
transforms. This is probably due to the small size of the train-
ing sets of the Landsat and Phoneme datasets as compared to
the training set of the Letter database. The same training and
testing setup as in the baseline experiments was also used in
the experiments with PCA, LDA and IST transformed data.
IST’s were calculated for various degrees of softmax poly-

nomials and the transform with the lowest error rate is quoted
in the tables below. The best transforms were the same for
support vector machine and learning vector quantisation clas-

sifiers. This means that the quality of the IST’s in these ex-
periments is independent of the classifier.
The results for the LVQ experiments on the Letter data-

base are collected in Table 3, where the columns stand for
the different dimensions of the transforms. The IST’s in these
experiments were trained for softmax polynomials with third
degree. It can be seen that the classification results for the

Dim. 1 2 3 4 6 8
LDA 85.49 60.62 47.40 32.27 19.34 13.04
PCA 96.28 86.32 64.26 43.28 19.85 12.60
IST 84.37 56.19 36.77 24.29 11.67 5.60

Table 3. Letter database. LVQ classification error rate (%)

IST consistently outperform that for LDA and PCA. The dif-
ference in error rate between LDA and IST is relatively small
for one dimension but becomes more pronounced for higher
dimensions. For dimensions 6 and 8, for instance, IST gives
a relative reduction in error rate by 40.7% and 55.6%, respec-
tively, over the minimal error rate of LDA and PCA. Com-
paring Tables 2 and 3, the IST error rate for dimension 8,
i.e. 5.6%, is even smaller than that of the baseline system,
i.e. 6.07%, which is trained on the full 16 dimensional fea-
ture vector. It should be noted that this was also observed for
dimensions 10 and 12 and polynomial degree 2, where the er-
ror rate was even lower at 3.53% and 3.22%. Table 4 shows

Dim. 1 2 3 4 6 8
LDA 99.22 80.7 53.12 31.62 17.2 11.78
PCA 96.03 93.52 67.5 38.67 15.65 9.48
IST 92.97 67.08 41.38 25.25 10.30 4.70

Table 4. Letter database. SVM classification error rate (%)

the error rates for the same LDA, PCA and IST as in Table
3 this time for the SVM classifier. As previously, the differ-
ence between error rate for IST and PCA or LDA is relatively
small for dimension one but becomes increasingly more pro-
nounced for higher dimensions. For dimensions 6 and 8 IST
gives a relative improvement of 34.2% and 50.4%, respec-
tively, over the minimal error rate of LDA and PCA.
Tables 5 and 6 show the error rates of the LVQ and SVM

classifiers, respectively, on the Landsat database. Since there
are only 6 classes in the Landsat database, the maximal di-
mension of the LDA transform is 5. Consequently, there are
no error rates available for the LDA transform in dimensions
9 and 15. The IST was trained with polynomials of degree 3
for dimension 1 and 2, degree 4 for dimension 3 and 4 and
degree 1 for dimension 9 and 15.
Whereas the difference in error rates became more pro-

nounced for higher dimensions on the letter database, on the
Landsat database this trend appears to be reversed. Here the
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difference in error rate is highest for dimension one and be-
comes smaller for higher dimensions. For dimensions 9 and
15, in fact, the error rate on the IST transformed data is slight-
ly higher than on the PCA transformed data. This might be a
consequence of the size of the training set which is not large
enough to train the polynomial parameters ci

l reliably in such
high dimensions.

Dim. 1 2 3 4 9 15
LDA 49.03 24.4 14.91 13.65 ∗ ∗

PCA 53.64 17.54 14.64 13.24 10.45 10.11
IST 28.16 16.90 14.43 12.91 11.63 10.62

Table 5. Landsat database. LVQ classification error rate (%)

Dim. 1 2 3 4 9 15
LDA 48.25 20.45 13.4 11.95 ∗ ∗

PCA 47.55 15.95 13.1 10.9 9.25 8.35
IST 26.1 15.55 12.45 11.3 10.83 10.02

Table 6. Landsat database. SVM classification error rate (%)

Tables 7 and 8 show the error rates for the LVQ and SVM
classifiers on the Phoneme database that comes as part of the
LVQ PAK distribution. The IST’s were trained with poly-
nomials of degree 2 for dimensions 1 to 3 and degree 1 for
dimensions 4 to 9. In Table 7 the trend is similar to that in
the experiments on the Landsat database. IST clearly outper-
forms both LDA and PCA in dimension one but the difference
becomes less pronounced for higher dimensions. For dimen-
sion 9 LVQ classification on the IST transformed data gives
slightly worse performance than on LDA and PCA transform-
ed data whereas classification with the SVM classifier yields
identical performance for PCA and IST transformed data with
a slight degradation for LDA transformed data.

Dim. 1 2 3 4 6 9
LDA 59.44 32.09 25.67 18.6 16.13 12.82
PCA 57.15 29.34 21.87 17.81 15.51 12.02
IST 47.95 30.97 21.22 17.32 14.96 13.34

Table 7. Phoneme database. LVQ classification error rate (%)

4. CONCLUSIONS

This paper introduced implicit softmax transforms which are
trained by minimisation of a weighted sum of Kullback-Leib-
ler distances. The calculation of the gradient of this cost func-
tion scales well with the size of the training set and can there-
fore be effectively employed in a quasi-Newton minimisation
method. The classification experiments showed that IST con-
sistently outperforms PCA and LDA on a large training set.
In the case of the LVQ classifier, reduction from 16 to 8, 10

Dim. 1 2 3 4 6 9
LDA 56.63 31.14 21.56 16.82 14.73 11.88
PCA 53.72 25.89 19.32 15.6 13 11.16
IST 47.4 25.13 19.11 14.49 12.75 11.66

Table 8. Phoneme database. SVM classification error rate(%)

and 12 dimensions even gave an improvement over the base-
line system. For databases with little training data IST out-
performs PCA and LDA on small dimensions while for larger
dimensions there is insufficient data to train IST robustly.
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