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ABSTRACT 
Modeling and understanding human motions are challenging in 
computer vision areas because the similar motions often occur at 
various time moments. The long-term dependences in observation 
data should be modeled to improve motion recognition 
performance. The conditional random field (CRF) is a powerful 
mechanism for large-span data modeling. In this paper, we present 
a new graphical model approach to effectively and efficiently 
implement CRF. Specifically, we integrate the dependent variables 
of a graph into a clique and build the junction tree for complex 
CRF structure with cycles. Using this approach, a tree inference 
algorithm is developed for finding the joint probability of all 
variables in the clique tree. In the implementation, we specify the 
continuous-valued hidden Markov model (HMM) parameters as 
the feature functions and evaluate the proposed junction tree CRF 
(JT-CRF) by using CMU Graphics Lab Motion Capture Database. 
The experimental results show that JT-CRF achieves the highest 
classification accuracies compared to the HMM, the maximum 
entropy Markov model and the linear-chain CRF. 

Index Terms—Conditional random field, graphical model, 
junction tree, tree model inference, human motion recognition

1. INTRODUCTION 
Human motion recognition is a key technology in many 

applications including automatic surveillance, video archival 
retrieval, sports analysis and human-computer interaction, etc. 
However, the human motion understanding is a challenging topic 
in computer vision areas because the ambiguity is seriously existed 
in non-rigid body articulation, loose clothing, mutual occlusion 
and the image noise due to shadow or illumination. The other 
problem is that the motions have concurrent structures which can 
be represented by some basic action units. To overcome these 
problems, many researchers have been working on establishing the 
robust understanding system, extracting the appropriate features 
and modeling the human motion [2][7]. In this paper, we focus on 
modeling the contexture information of human motions by 
graphical modeling of conditional random fields. 

As we know, the hidden Markov model (HMM) has been widely 
developed for modeling human motions. The inevitable drawback 
is that HMM models have the strict assumption that the sequence 
of observations is mutually independent in temporal domain. But, 
in real-world applications, similar motions often occur at various 
time moments. The long-term dependences among observations 
are meaningful and should be modeled. For this consideration, the 
conditional random field (CRF) has been applied for large-span 
modeling of mutually dependent observations [5]. Also, a 
generative HMM model should enumerate all possible observation 
sequences and calculate the joint probability over observation 
sequence and state sequence. But, in real world, the set of 
observations is not always enumerable. In contrast to generative 

models, CRF is referred as the discriminative models where the 
competing information is involved. CRF constructs a global model 
over entire sequence for prediction of the state sequence given the 
observation sequence rather than estimating the maximum 
likelihood parameters from the observations as done by HMM.    
    Recently, CRF has been applied for classification of human 
motions and gestures [9][11]. CRF is advantageous for modeling 
contextual information due to the reasons of (1) avoiding the 
independence assumptions and (2) accommodating the long range 
interaction among observations. The simplest CRF graph is the 
linear-chain structure where the optimal inference algorithm exists. 
However, when the random variables are highly correlated as 
observed in human motions, a complex graph with loops or cycles 
should be constructed. The exact inference of such complex CRF 
structure is computationally expensive. In this paper, we present a 
novel graphical model for rapid implementation of CRF. 
Importantly, we employ the junction tree algorithm to deal with 
the complex CRF graph with cycles. The idea of junction tree is 
based on a tree-like structure where the nodes in the tree are clique 
nodes rather than single nodes. This structure is also called 
hypergraph [4]. We can apply a sum-product algorithm to infer the 
marginal probabilities for not only a single variable but also all 
variables that belong to the same clique node. We merge the 
dependent nodes into a clique and build the junction tree. The 
cycle structure of CRF is converted to the clique tree. Using this 
procedure, a tree inference algorithm is presented for estimation of 
the joint probability for all variables in the graph. In the 
implementation of CRF, we specify the continuous-valued HMM 
parameters as the features and explore the relationships between 
observations and HMM states. Using these relationships, we 
construct the potential functions of CRF for model training and 
adopt the trained models for human motion recognition. 

 
2. RELATED WORK 

2.1 Conditional random field 
  Although the HMM models have been extended to human motion 
recognition task [12], the assumption that observations are 
independent was made so that the recognition performance was 
limited in real-world applications. Accordingly, the conditional 
random field was proposed to relax this assumption by modeling 
the dependencies between observations and their Markov states. 
Owing to this advantage, CRF was widely extended to solve the 
problems in natural language processing and recently applied to 
model the contextual information in human motions. A CRF can 
be defined as an undirected graph with each node representing a 
variable and obeying the property of Markov chains. The state 
label is not only determined by the observation but also by its 
neighbors in the graph. The undirected graphical structure can be 
factorized into a normalized product of potential functions. As 
shown in Figure 1, the structure of CRF can be a simple graph as a 
linear chain or a complex graph which was used for human motion 
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recognition [9]. Similar to the notations in HMM, the observation 
sequence and state sequence are denoted by },,{ 1 nxxX
and },,{ 1 nssS , respectively. 

1s 1ns2s
ns

1x 1nx2x nx

1s 1ns2s 3s ns

1x 1nx2x 3x nx
(a) linear-chain CRF structure     (b) complex CRF structure 

Figure 1 Different structures of CRF 

Different from HMM, the state ts  of CRF in Figure 1(b) is 
decided by considering its neighbors 1ts , 1tx , tx , 1tx  and 1ts .
In [9], the graph of a linear-chain structure was considered. The 
conditional probability was defined by  
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Their feature functions in potential function were specified by  
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In (2), (3) and (4), A depended on the state numbers and 
B depended on the size of observation dimension and state 

number. Also, the function f  was defined as an identity function 
]I[  and its value was not equal to 0 when the states 1m  and 2m

were concurrent. The function g indicated whether the d
dimensional observation x  was assigned to the state m at time t .
The temporal context window 12W was used to identify the 
range size W  around the current observation and the context 
information influencing the same state. We estimate the parameter 
set },{ ba by differentiating the log-conditional 
probabilities with respect to all parameters. The generalized 
iterative scaling (GIS) algorithm [3] is feasible to solve this 
estimation problem. 

2.2 Junction tree and joint probability 
It is known that the inference problem on tree graph can be 

solved exactly. But for a graph with cycles, we need to cluster the 
dependent nodes and form a clique tree. Such clique tree 
guarantees the consistent computation of the join probability 
because the same variable may appear at different cliques. The 
junction tree was used to infer the complex graph with cycles 
[8][10]. In general, a graph has a junction tree if and only if it is a 
triangulated graph [4]. Here, we shorten the discussion by 
assuming that the graph was already triangulated as Figure 2(a). 
For this example, we can build junction tree as displayed in Figure 
2(b). In this junction tree, the original nodes in a clique are merged 
into a clique node, e.g. node ABD, ABE BCE, and BCF. The 
separator nodes AB, BF and BE separating the neighboring clique 
nodes are also created. Finally, an exact tree-based inference 
algorithm can be run on the transformed graph. We obtain the joint 
probability of all variables as        
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where )(  is the potential function of a node. 

       
(a) Triangulated Graph           (b) Corresponding junction tree 

Figure 2 Junction tree of a triangulated graph 
 

3. CRF GRAPHICAL MODELING 
In general, the relations between observations and states are 

complex in human motion recognition. This complexity goes 
beyond the capability that the linear-chain structure can handle. To 
develop a sophisticated CRF framework, we consider the complex 
CRF structure with cycles and use the junction tree algorithm for 
CRF graphical modeling. Using the transformed tree structure, the 
algorithm of finding joint probability in a graph is constructed. 
Also, we assign different feature functions from those in 
conventional CRF so as to fit the continuous variables and control 
the size of parameter set.

3.1. Building junction tree for CRF model inference 
    In this study, we take into account the complex CRF structure in 
Figure 1(b). Each Markov state is affected by three sequential 
observations. First, we transform this CRF structure into a junction 
tree graph. Because the original graph has been already a 
triangulated graph, we merge the variables in each clique into a 
node. Then, the original graph is converted to a tree-like structure 
as given in Figure 3. 

1s 2s1x 1s 2s1s 2s
2s2x

1ns ns1nx
1ns ns

1ns nsn
x

2x
Figure 3 Junction tree for CRF 

Given this junction tree, we can calculate the joint probability 
),( Sp X  of the observation sequence and the state sequence by  

),(),(),(),(
),,(),,(),,(),,(),,(

1322221

1323322212211

nn

nnn

sssssss
ssssssssss

x
xxxxx (6) 

We can rewrite it as  
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For each time step, the potential functions )(  can be obtained as  
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The posterior probability is finally calculated by 
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And )(Xp is obtained from all possible state sequences as  
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3.2. Parameter estimation 
In (2) and (8), f functions are used to express the features of 

two neighboring states and g  functions are used to express those 
of observation-state. At each time t , we have four g  functions 
and one f function in (8). For ease of expression, we use the 
notation of parameter vectors tt ba and to replace different 

,, at time t . Then (8) can be expressed by 
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In a general expression, we rewrite (10) as 
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where B is number of states in the model and  
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Our goal is to estimate CRF parameters by maximizing the 
objective function 
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with all observation-state pairs )},(),{( )()()1()1( NN XSXS  in training 
set.

Here, the GIS algorithm [3] is applied to find CRF solution. We 
differentiate (13) with respect to each parameter [5] and obtain 
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The objective function is optimal when the empirical expectation 
equals to the expectation of true model 
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The notation )(~p  means the empirical probability function. Then 
we update parameters by the following steps: 
1. Initialize 1)0( .
2. Calculate the empirical expectation sF .
3. Determine the expectation for true model sE
4. Update the parameter until convergence 

)log( )()()1( j
ss

jj EF .                   (16) 
In GIS algorithm,  is a learning rate which is decreased by 
iterations so as to guarantee the convergence of learning. Different 
from conventional CRF developed for discrete variables, we adopt 
the probability parameters as the continuous features. We start 
from a HMM structure. A well-trained HMM is prepared for 
finding the states corresponding to the observations. Next, the log-
likelihoods and the transition probabilities are calculated for 
representing the observation-to-state feature functions g  and 
state-to-state feature functions f  [1]. After GIS algorithm 
converges, we estimate the CRF parameters. We can recognize an 
observation sequence by calculating the posterior probability for 
class ic  given the observation sequence X . The decision function 
is calculated by  
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where ic  is class i and 's expresses all possible state sequences in i .
The classification output is determined according to this posterior 
probability. 

 
4. EXPERIMENTS 

4.1. Experimental setup 
In the experiments, we carried out the proposed method by 

using image features of human body which were extracted from 
video frames directly rather than reconstructing 2D or 3D model of 
human motion. We evaluated the performance of HMM, MEMM, 
linear-chain CRF (LC-CRF) and the proposed junction-tree CRF 
(JT-CRF) on human motion recognition by using two public-
domain motion databases; CMU Graphic Lab Motion Capture 
Database (http://mocap.cs.cmu.edu/) and TwoHandManip Gesture 
Database from IDIAP (http://www.idiap.ch/resources/twohanded/). 
We selected 12 single body’s motions contained in the CMU 
database: Walk, Run, Jump, Climb down, Climb up, Place Tee, 
Swing, Putt, Boxing, Wash window, Stand up and Sit down. Each 
motion had 5 section videos with duration at most 4 seconds long 
at resolution 240x320. The sampling rate was 30 frames per 
second. Using the TwoHandManip database, we adopted 7 gesture 
classes: Front, Back, Push, Up, Down, Left and Right in the 
evaluation. We selected 70 section videos for all gestures which 
were captured by the same camera from original database. These 
videos were captured with 25 frames per second and duration of 1 
or 2 seconds long at resolution 240x320. On both databases, we 
randomly selected 3 sections for each motion class to train the 
models and the remaining sections were used as test data. There 
were 24 and 49 sections in CMU and IDIAP databases, 
respectively. We applied a preprocessing stage of extracting the 
features from the motion video frames for a view-dependent 
human motion recognition system. This stage is shown as Figure 4 
on different databases. The background information was provided 
on CMU database that we detected the foreground and extracted 
the human body exactly. On TwoHandManip Database, we 
detected both hands by using the color information and preserved 
the spatial information of two hands in the whole frame. After 
extracting the interested parts from the video frames, we down-
sampled the resolution of images and transformed the images to 
ones with 96 dimensions for reducing the computation cost.   

(a) Human motion                  (b) Gesture 
Figure 4 (a) Body in CMU Graphic Lab Motion Capture Database; 

(b) Gesture in IDIAP TwoHandManip Database 

Also, we modeled each motion with a HMM model which was 
constructed by three states. We used a single Gaussian distribution 
to model each state in a HMM model. The diagonal covariance 
matrices were adopted. The transitions of states were limited as 
left to right and the skipping of state was not allowed in the model. 
After training HMM models for all motions, we run Viterbi 
algorithms to obtain log-likelihood of each training sample. 
Sequentially, we gathered all the frames assigned to the same state 
for CRF models training. The iteration number in GIS algorithm 
was fixed as 300 in our experiments. In the test phase, the test 
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frame sequences were aligned by running Viterbi algorithm with 
the well-trained HMM model. We accordingly had the features to 
calculate the posterior probabilities for each CRF model. We 
retrieve the most likely class with the highest posterior probability.        

4.2. Experimental results 
In Table 1, we compare HMM and LC-CRF with different 

window size W  by evaluating them on CMU Motion database. We 
find that considering the context information does improve the 
recognition accuracy. The accuracy is increased when the window 
size is enlarged. The improvement is saturated at the case of 

2W .

Table 1 Classification accuracies of HMM and LC-CRF on using 
CMU database 

 Accuracy 
HMM 62.5% 
LC-CRF (W  =0) 75.0% 
LC-CRF (W  =1) 79.2% 
LC-CRF (W  =2) 79.2% 

On using CMU and IDIAP databases, we compare the recognition 
accuracies of HMM, LC-CRF and the proposed JT-CRF in Figure 
5. If the state in JT-CRF is affected by 3 observations, we denote it 
as JT-CRF3. We find that JT-CRF outperform other methods. 
Furthermore, we extend JT-CRF to the case (JT-CRF5) that each 
state is affected by 5 observations. We even obtain good 
performance on using IDIAP database. 

ON CMU ON IDIAP
50

60

70

80

90

100

C
la

ss
ifi

ca
tio

n 
Ac

cu
ra

cy
(%

)

Database

 HMM
 LC-CRF(w=1)
 JT-CRF3
 JT-CRF5

 
Figure 5 Classification accuracies of HMM, CRF and JTCRF on 

using two databases 

We also carry out the maximum entropy Markov model (MEMM) 
[6] on using IDIAP database. In HEMM algorithm, the 
normalization is considered at each time moment rather than the 
whole time sequence. In the results, we obtain the performance of 
MEMM (77.6%) and JT-CRF3 (87.5%) which is better than HMM 
(75.5%). In addition, the definition of feature functions affects the 
classification performance. Basically, the use of likelihood 
function as feature has much smaller size of parameters than that 
of raw image data [9]. We find that the classification accuracy of 
CRF using the traditional raw data as feature is 61.2% and that 
using the HMM parameters as feature is 83.7%. This is because 
that the dimension of raw image data is too high to obtain 
sufficient training data for reliable CRF modeling. 

5. COCLUSIONS  
In this study, we presented a complex CRF model rather than 

the traditional linear-chain CRF. This model was able to describe 

complex dependence of several variables. By using the junction 
tree algorithm from graphical theory, we performed transformation 
and inference for the graph structure with cycles. We developed a 
new JT-CRF algorithm for human motion recognition. Also, we 
established the HMM-based feature function so as to fit the 
continuous variables and data segmentations without tagging 
manually. The definition of feature functions was different from 
those in conventional CRF methods. We improved the 
performance especially when the training data was limited in the 
collected databases. Compared to HMM, HEMM and LR-CRF, 
better performance were archived by JT-CRF in the experiments 
on two public-domain motion databases. In the future, we are 
developing the variational Bayesian inference for CRF modeling.  
Also, we are extracting robust features for CRF and integrating 
multi-streams where each stream models the motion of a part of 
human body.  A larger database will be adopted for evaluation of 
human motion recognition. 
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