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ABSTRACT 

 
In this paper, a wavelet neural network (WNN)-based approach for 
invariant 2D object classification is proposed. The method 
employs the WNN characterizing the singularities of the object 
curvature representation and performing the classification at the 
same time and in an automatic way. The discriminative time-
frequency attributes of the singularities on the object boundary are 
firstly captured by the continuous wavelet transform (CWT) and 
then stored by the WNN as its initial scale-translation parameters. 
These parameters are trained to the optimum status during the 
learning stage. Thus, only a few convolutions at the optimum 
scale-translation grids are involved during the classification, which 
makes our method suitable for real-time recognition tasks. 
Compared with the artificial neural network (ANN)-based 
approach preceded by a wavelet filter bank with fixed scale-
translation parameters as well as the traditional methods like 
Fourier descriptors and moment invariants, our scheme 
demonstrates the best discrimination performance under various 
noisy and affine conditions. 

Index Terms—Wavelet neural network, continuous wavelet 
transforms, curvature representation, object recognition 
 

1. INTRODUCTION 
 
Wavelet transform is efficient in representing and detecting local 
features of 2D objects due to the spatial and frequency localization 
property of wavelet bases [1]. With the detection of local features, 
an object can easily be recognized. Many new algorithms based on 
wavelet transform have been developed to solve object recognition 
problems [2-3]. However, there are some shortcomings for the 
feature matching of these algorithms. In order to ensure the 
reliability of the matching results, they all require an enormous 
number of scales to construct the time-frequency features at 
various scales during the classification process. Each scale 
corresponds to convolving the signal with a wavelet function; 
hence a large number of convolutions are needed for these 
algorithms. It makes them computationally inefficient. 

ANN is good at tasks of pattern matching and classification. 
In order to further extend the ability of wavelet transform to 
represent complex patterns and reduce the computational burden of 
the wavelet-based classification methods, a unique network called 
the wavelet neural network, which integrating the wavelets into the 
ANN was proposed [4]. The WNN offers a good compromise 
between robust implementations resulting from the redundancy 
characteristics of wavelets and the capability of ANN in learning 
from examples, so it has been widely used in various areas [5-6]. 
However, the application of the WNN to object recognition is a 
relatively new approach. To the best of our knowledge, no research 
results on this topic have been published until now. Many 

problems such as the selection of wavelet function, determination 
of the network structure and initialization of the scale-translation 
parameters of WNN are yet to be solved. 

In this paper, an efficient WNN-based approach for the 2D 
object classification is proposed. The method employs the WNN 
characterizing singularities of the object’s curvature representation 
and performing the object classification at the same time and in an 
automatic way. The WNN can be considered as an expanded 
perceptron in which the neurons of the first layer are replaced by 
wavelet nodes. These nodes, due to the variable time-frequency 
resolution of the wavelet transform, allow the detection of 
singularities on the boundary as well as the extraction and 
selection of a small number of meaningful features from its sample 
points. The obtained features are then regarded as inputs to the 
subsequent neurons used as a classifier. The remarkable feature of 
our method is that the local attributes of each pattern can be 
effectively represented by a limited number of scale-translation 
parameters after a careful analysis to the CWT modulus extrema in 
time-frequency plane. It is worth noting that this wavelet analysis 
can be conducted offline, which does not increase the complexity 
of the algorithm. The discriminative scale-translation features of 
each pattern are stored in the WNN as the initial scale-translation 
parameters of the wavelet nodes. These parameters are then 
adjusted to the optimum status at the training stage. Thus, instead 
of matching features by convolving the signal with wavelet 
functions at a larger number of scales, the computational burden is 
significantly reduced in our method with only a few convolutions 
involving at the optimum scale-translation grids during the 
classification, which makes it suitable for real-time recognitions. 
 

2. WAVELET NEURAL NETWORK 
 
The feature extraction and representation properties of the wavelet 
transform can be merged into the structure of the ANN to further 
extend the ability to approximate complicated patterns. A typical 
structure suggested by these considerations is the WT-ANN which 
consists of a preprocessing wavelet-based filter banks and an ANN 
[7-8]. The performance of this WT-ANN architecture is highly 
dependent on both the values of the translation and scale 
parameters that characterize the preprocessing wavelet-based filter 
bank. These values are chosen by users during the design stage 
according to their knowledge and experience. Once the parameters 
are determined, no adjustment is possible during the learning stage 
of the ANN.  

To overcome the limitation, the WNN was proposed, in which 
the classical training of only the connection weights of the ANN is 
extended to an additional tuning of the scale-translation parameters 
depending upon the correct classification. The WNN can be 
considered as an extended perceptron consisting of two parts. The 
first part contains wavelet nodes in which the classical sigmoidal 
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functions are substituted by the wavelet basis functions. They act 
as preprocessing units for singularity detection and feature 
extraction. The classification is performed by the second part, a 
traditional single-layer or multi-layer perceptron. During the 
training stage, the WNN is able not only to learn arbitrarily 
complex decision regions defined by the connection weights, but 
also to look for those parts of the time-frequency plane that are 
suited for a more reliable classification of the input signals. 
 

3. THE PROPOSED METHOD 
 

The goal of our research is to design a 2D object recognition 
approach which utilizes the WNN to extract the optimum scale-
translation features of the object boundary curvature representation 
and to perform the classification automatically. The extracted 
scale-translation features are outputs of the wavelet nodes which 
correspond to the optimum CWT coefficients generated by 
convolving the normalized curvature function with wavelet basis 
functions at specific scale-translation grids. These optimum scale- 
translation grids characterize singularities of the curvature 
representation in time-frequency plane. Thus, by mapping 
singularities of the curvature representation to dominant points on 
the object boundary, the time-frequency characteristics of irregular 
structures along the object boundary are perfectly described by the 
wavelet nodes with optimum scale-translation parameters. In 
addition, the number of wavelet nodes and the initial values of the 
scale-translation parameters can also be determined from the local 
extrema evolution map of the CWT modulus. 

Our approach comprises four steps: 1. The boundary of a 2D 
object is firstly extracted and resampled such that the boundary 
data records are scale normalized. 2. Conduct boundary transforms 
to obtain the curvature representation and make the representation 
invariant to rotation. 3. Feed the invariant curvature representation 
into the WNN and calculate the wavelet coefficients by convolving 
it with the wavelet nodes which are tuned into the optimum scale-
translation grids during the learning stage. 4. Classify the input 
object into the class whose representative boundary exhibits the 
maximum similarity to that of the input object. 

Since the information on the shape of a curve is often 
concentrated at dominant points having high curvature, the 
curvature representation [9] of a curve plays an important role in 
image analysis. The curvature representation itself is invariant to 
translation. Therefore, only scale and rotation normalization 
should be taken into account. In this work, the boundary is 
resampled and normalized into 1024 equally distant points. The 
rotation-invariant curvature representation can be achieved by 
searching curvature values along the boundary and selecting the 
point with the largest curvature value as the middle point of the 
boundary. Finally, we normalize the curvature sequence by 
dividing its maximum absolute value, as shown in Eq.(1). 
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where c(t) and C(t) denote the original and the normalized 
curvature function, respectively. T denotes the length of the 
normalized boundary. 
 

4. CONSTRUCTION OF THE WNN 
4.1. General architecture 
For a multi-class recognition task, like our application, it is 
advisable to use a system with the multi-network single output 

(MNSO) structure. MNSO divides the whole WNN into several 
clusters. Each cluster consisting of one sub-WNN is responsible for 
the discrimination of the objects belonging to a single class. Outputs 
of all clusters are compared in a comparison layer which selects the 
maximum value as the output of the WNN. The input object is then 
classified into the class represented by the cluster with the 
maximum output. As shown in Fig.1, in our system, the WNN 
comprises several clusters, i.e. sub-WNN1~sub-WNNk, where k is 
the number of the object classes. Each sub-WNN is established by a 
three-layer structure. The first layer contains wavelet nodes with 
scaled and translated versions of the wavelet function as activation 
functions. In the other two layers, traditional sigmoid neurons are 
used. The input of each sub-WNN is the normalized curvature 
function of the object boundary. The real Morlet wavelet 

2 2( ) cos(1.75 ) tt t e  is used as the kernel function of the wavelet 
nodes for all sub-WNNs in that it provides the best recognition 
performance. 

Classification performance of the WNN greatly depends on 
its structure. As will be discussed, the decision of the number of 
wavelet nodes and the initialization of the scale-translation 
parameters of wavelet nodes rely on the spectral content 
characterizing the boundary of the class and can be solved in a 
reasonable manner by analyzing its normalized curvature function 
in time-frequency plane. In the following parts, let us take the sub-
WNN1 and airplanes shown in Fig.2 as an example to illustrate the 
design procedure of the WNN. 
4.2. Determination of the number of wavelet nodes 
As discussed in section 3, the characteristics of dominant points on 
the boundary can be adaptively explored by the wavelet nodes 
with the optimum scale-translation parameters. Thus the number of 
wavelet nodes is uniquely decided by the number of explored 
dominant points. On the other hand, the singularities of a curvature 
representation can be detected from the local extrema of its 
wavelet transform. The evolution across scales of the local wavelet 
extrema specifies the location and the local shape of these 
singularities that correspond to the dominant points of the object 
boundary. We can thus not only detect the dominant points but 
also characterize them with the scale-translation parameters of the 
wavelet nodes.  

 In order to build the evolution map of the local wavelet 
extrema across scales, the CWT of the normalized curvature 
function of a representative sample of the class is evaluated. Fig. 
3(b) depicts the projection of the CWT coefficients of the curve 
shown in Fig. 3(a), i.e. the normalized curvature function of the 
airplane from class-1, on scale-translation plane. Then, we relate 
each wavelet modulus extrema at the scale a to a wavelet modulus 
extrema at the scale (a+1) which is as close as possible and with 
the same sign. Thus, we can obtain a sequence of modulus extrema 
lines (extrema skeletons) that propagate across scales up to the 
finest scale. Each of extrema skeleton represents a potential or 
false singular point of the curvature function from class-1, because 
boundary noise may also introduce modulus extrema. However, 
the wavelet amplitude of the boundary singularity decreases when 
the scale decreases, while the wavelet amplitude of the boundary 
noise increases on average when the scale decreases [1]. At this 
point, we remove any extrema skeleton whose amplitude increases 
on average when the scale decreases and retain those extrema 
skeletons whose amplitude decreases when the scale decreases. 
Most of the boundary noise can be discarded during this selection. 
Because of the noise stochastic nature, there may be some extrema 
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skeletons which represent the same trends as the extrema skeletons 
due to the actual boundary singularities, can not be got rid of by 
the above elimination. In order to attain a complete reduction of 
noise influence, a further selection has to be performed by 
introducing a length threshold L to the extrema skeletons. Usually, 
important singularities can be detected at a wide range of scale 
levels and their extrema skeletons cover almost all scale levels. On 
the contrary, local extrema of the noise often concentrate at low 
scale levels and may disappear quickly as the scale increases, 
which probably results in extrema skeletons with short length. 
Therefore, among the remaining extrema skeletons after the first 
selection, we neglect all extrema skeletons whose length is shorter 
than the length threshold L. These are extrema skeletons that are 
mostly influenced either by the noise or by small ripples of the 
object boundary which do not carry significant information. As a 
result, by omitting the extrema skeletons due to the noise and non-
significant singularities, only the dominant singularities with long 
extrema skeletons will be kept. After the second selection, each 
remaining extrema skeleton characterizes a dominant point on the 
object boundary. Fig.3(c) shows the pruned extrema skeleton map 
after two selections (L = 80). An extrema skeleton contains 
important features of the relevant dominant point, such as the 
location of the point and representative scale-translation 
parameters where the maximum wavelet modulus appears. In our 
sub-WNNs, each detected extrema skeleton due to a dominant 
point is characterized by two wavelet nodes, i.e. the L-Node which 
represents the location of the point, and the ST-Node which 
describes the representative scale-translation features of the point. 
Thus, the number of wavelet nodes in a sub-WNN is twice the 
number of the dominant extrema skeletons of the object boundary 
from a certain class. In particular, as suggested in Fig.3(c), there 
are 7 extrema skeletons detected in the pruned extrema skeleton 
map of class-1, so the number of wavelet nodes required in the 
sub-WNN1 is 14. For other sub-WNNs, the number of wavelet 
nodes can also be determined in a similar way. 
4.3. Initialization of scale-translation parameters 
The scale-translation values of the wavelet nodes and the 
connection weights form the parameters of a sub-WNN. 
Connection weights can be randomly initialized between (-1,1), 
while the scale-translation parameters should be carefully 
initialized to match the time-frequency properties of the dominant 
point described by the wavelet node. Note that each extrema 
skeleton due to a dominant point is characterized by two wavelet 
nodes, i.e. L-Node and ST-Node. Thus, initial scale-translation 
values of these two wavelet nodes can be decided by the relevant 
extrema skeleton. For the L-Node, its scale parameter a1 is always 

set to 1 and its translation parameter b1, corresponding to the 
accurate position of the dominant point, is obtained by tracing the 
extrema skeleton when it intersects with the finest scale level a = 
1. For the ST-Node, we build a wavelet amplitude-scale curve 
according to the extrema skeleton and find the scale level where 
the maximum amplitude occurs. The scale coordinate of the 
amplitude maxima serves as the scale parameter a2 of the ST-Node, 
while the translation parameter b2 can be initialized by the scale-
translation mapping existing in the extrema skeleton. Fig.3(d) 
exhibits the amplitude-scale curve of the extrema skeleton #1, in 
which the maximum amplitude occurs at scale level a = 92. 
Combining information provided by the extrema skeleton #1, 
scale-translation parameters of the two wavelet nodes are 
initialized as (a1 = 1, b1 = 243) and (a2 = 92, b2 = 102). Initial 
scale-translation parameters of the rest wavelet nodes in the WNN 
can also be obtained similarly. 
 

5. EXPERIMENTAL RESULTS 
 
Airplanes belonging to six classes, i.e. class-1~class-6, as shown in 
Fig.2, are used as targets for classifications. In this experiment, 
1980 samples suffering from geometry transform and random 
Gaussian noise comprise the test sets. 1320 samples are randomly 
selected to form the training sets for the learning of the WNN. For 
each sample from a certain class, test sets are formed by changing 
the size of the sample in various positions and orientations. In 
addition, these samples are corrupted with noise and distortion. 
Noise and distortion effects are introduced by adding random noise 
to the boundary points. The measure of noise in an object 
boundary is determined by the signal-to-noise ratio (SNR). 

The efficiency of the proposed WNN-based recognition 
method has been compared with the methods based on an ANN 
preceded either by a wavelet filter bank (WT-ANN) or traditional 
shape descriptors, like the Fourier descriptors [10] (FD-ANN) and 
the moment invariants [11] (MI-ANN), which act as a 
preprocessing stage. The WT-ANN is characterized by the same 
structure of the related WNN. In particular, the input layer consists 
of wavelet nodes with the scale-translation parameters having the 
same values as those used in the initialization of the wavelet nodes 
of the WNN. A random initialization, on the other hand, has been 
preferred for any sigmoid neuron involved in the structure of the 
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Figure 1.  Structure of the 

proposed WNN 
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Figure 2. Six classes airplanes 

for classifications

 
                      (a)                                       (b) 

 
                      (c)                                        (d) 

Figure 3.   (a) Normalized curvature curve of class-1, (b) CWT 
projection on the scale-translation plane, (c) Pruned extrema 

skeletons, (d) Amplitude-scale curve of the extrema skeleton #1 
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hidden layer and the output layer. For the FD-ANN, a subset 
containing 10 lowest frequency Fourier coefficients of the object 
boundary is served as its inputs and the classifier uses a multi-layer 
perceptron network with one hidden layer. Moment invariants of 
an airplane are obtained from a binary image of the airplane where 
pixels inside the boundary are assigned intensity level 1 and pixels 
outside the boundary are assigned intensity level 0. We apply a set 
of moment invariants [11] to extract the regional features of 
airplanes and feed them into the MI-ANN.  

The discrimination performances of the various classifiers are 
assessed and compared in Table I. From the obtained results, we 
can make the following observations. (1). Among all the 
classifiers, the WNN has always shown the best performance in 
terms of the classification accuracy. The WNN outperforms the 
WT-ANN due to the additional tuning of the scale and translation 
parameters of the wavelet nodes during the learning stage. While 
the scale-translation parameters of the WT-ANN can not 
adaptively adjust to the optimum status, once they are determined. 
On the other hand, both wavelet-based methods achieve better 
discrimination results than the FD-ANN and the MI-ANN. Fourier 
descriptors and moment invariants provide global features which 
are able to distinguish objects with different shapes, thus 
recognition results of the FD-ANN and the MI-ANN are 
comparable to that of the WT-ANN for class-3 and class-6. But 
global features are incapable of differentiating objects with similar 
shapes, which interprets the low recognition rates of the FD-ANN 
and the MI-ANN for class-1, class-2 and class-4, class-5. 
Moreover, it is also worth noting how good the behavior of the 
WNN is with respect to the increasing noise level. The 
performance degradation of the WNN influenced by the noise is 
always smaller than that characterizing other signal processing 
solutions. (2). For high noise levels (10dB and 20dB), the WT-
ANN performs much better than the FD-ANN. This outcome can 

be justified by the capability of the wavelet transform to shift most 
of the noise power to the highest frequencies on time-frequency 
plane, which is absent in the Fourier transform-based approach. 
(3). The performance gap between the WNN and the WT-ANN 
increases as the SNR decreases. This result shows that the scale-
translation parameters of the WNN are adapted to the optimum 
status during the learning process, which can provide a fair benefit 
over a non-optimized time-frequency analysis provided by the 
wavelet filter bank in the WT-ANN. 

6. CONCLUSION 

In this paper, we developed an efficient 2D object recognition 
method using the WNN. The normalized curvature function was 
applied to represent the shape of an object. By making a 
preliminary CWT analysis to the curvature representation of an 
object contour, we fully capture the local time-frequency attributes 
of the singularities on the object boundary. Thus the number of 
wavelet nodes and the initial scale-translation parameters of the 
WNN can be determined under the guidance of the knowledge 
about the time-frequency properties of the object boundary, 
without any ambiguity. Compared with the WT-ANN with fixed 
scale-translation parameters and traditional methods like Fourier 
descriptors and moment invariants, our scheme demonstrates the 
best recognition performance under various noisy and affine 
conditions. 
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Table 1. Comparison of recognition results of various classifiers based on 
different SNRs 

classifiers class-1 class-2 class-3 class-4 class-5 class-6 
SNR = 50dB 

WNN 95.45% 97.58% 98.48% 96.97% 97.58% 100% 
WT-ANN 93.94% 95.45% 98.18% 94.55% 96.97% 100% 
FD-ANN 90.61% 92.12% 96.97% 93.33% 94.24% 98.48% 
MI-ANN 90.91% 92.42% 97.27% 93.03% 93.94% 98.48% 

SNR = 40dB 

WNN 94.24% 96.97% 98.48% 96.97% 96.97% 99.39% 
WT-ANN 91.82% 93.94% 95.45% 93.03% 94.85% 96.97% 
FD-ANN 86.97% 89.70% 94.55% 88.48% 91.52% 94.85% 
MI-ANN 86.36% 92.42% 94.85% 89.39% 92.42% 95.45% 

SNR = 30dB 
WNN 92.12% 94.55% 96.97% 93.94% 95.45% 98.79% 

WT-ANN 87.58% 93.33% 93.64% 88.79% 92.42% 95.76% 
FD-ANN 82.42% 87.27% 90.91% 83.64% 86.36% 93.94% 
MI-ANN 83.33% 89.39% 91.52% 84.85% 87.88% 94.55% 

SNR = 20dB 
WNN 89.39% 93.03% 95.45% 89.39% 93.33% 96.97% 

WT-ANN 83.33% 89.70% 90.30% 84.55% 88.79% 91.82% 
FD-ANN 74.24% 80.61% 83.94% 76.97% 81.52% 86.36% 
MI-ANN 76.97% 83.33% 85.45% 79.39% 83.33% 88.48% 

SNR = 10dB 
WNN 86.36% 89.39% 90.91% 84.85% 89.70% 94.55% 

WT-ANN 78.48% 83.33% 83.64% 77.27% 81.82% 88.79% 
FD-ANN 70.30% 74.24% 75.76% 68.79% 73.94% 80.61% 
MI-ANN 72.73% 76.06% 77.27% 70.91% 75.76% 82.42% 
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