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ABSTRACT

Using intelligent resource allocation based on the information
content in the imaging system’s field-of-view for the success-
ful design of a flat-profile multiplexed optical imaging system
requires the use of adaptive techniques. This paper describes
a model-based technique for determining regions of interest in
aerial images using the 2D normalized power spectral density
within Gilles’ saliency map estimator. The proposed tech-
nique exploits the 1/fα spatial spectral shape of such natu-
ral imagery in a computationally-simple approach that is ro-
bust to additive noise. Application of the method to candidate
aerial images shows its ability to identify consistent regions
of interest for such data.

Index Terms— Optical imaging, image region analysis,
information theory, multisensor systems, spectral analysis

1. INTRODUCTION
Recent work in computational imaging systems has yielded
system designs that combine multi-aperature image collec-
tion with advanced image reconstruction algorithms in a
lightweight flat form factor device [1, 2, 3, 4]. In these
systems, multiaperture optical imaging systems built using
state-of-the-art micro-optics technology are used for data
collection, and multiple low-resolution images are combined
using signal processing techniques to produce a final image
with both a high angular resolution and a large field-of-view.
The performance of multiplexed imaging systems may be

enhanced by optimizing imaging resource utilization through
adaptive resource allocation based on the information con-
tent of the scene. Regions within a scene devoid of features
are allocated fewer imaging resources, allowing more imag-
ing resources to be devoted to regions of higher spatial in-
formation for improved spatial resolution. This design has
been termed PANOPTES (processing arrays of Nyquist lim-
ited observations to produce a thin electro-optic sensor) [3],

∗The first author performed the work while at the Department of Electrical
Engineering, Southern Methodist University, Dallas, Texas.

†This work was funded in part by DARPA and the U.S. Army.

which employs steerable micro-mirror sub-imaging arrays to
collect image information for reconstruction. Non-uniform
spatial allocation of imaging resources matching the informa-
tion content of the scene is critical for good performance in
such a strategy. Techniques for estimating saliency, defined
as the degree to which a portion of an image is pre-attentively
distinct to the human eye, are therefore required. Regions
with high saliency lead to immediate visual attention in the
early stages of the human visual system [5].
The design of computational multi-aperture imaging sys-

tems require automatic allocation of resources to feature-rich
regions within a scene. In [6], a novel approach for gener-
ating saliency images or maps was proposed that uses local
estimates of the image power spectral density (PSD) to gen-
erate the saliency image as

Jij = −
∑

u

∑

v

pij(u, v) log2 pij(u, v). (1)

In this relation, pij(u, v) is the spatial frequency histogram
for the (i, j)th block that is computed by dividing the PSD
by the sum of the powers in all of the frequency-domain
bins, where u and v are discrete frequency-bin indices. Ex-
perimental results in [6] indicated that (1) tends to identify
information-rich portions of the scene more readily and con-
sistently than traditional entropy maps using histograms. The
main drawback to (1) is its high computational complexity
due to the number of terms and nonlinear log evaluations per
saliency map pixel.
In this paper, we leverage the fact that the mean PSD of

natural images follows an 1/fα power law distribution to de-
velop a simple approximate procedure for calculating (1). Our
procedure uses the relationship between the power-law expo-
nent α and the saliency expression in (1). As the exponent
α can be estimated by modeling the PSD of the local region
as a power-law distribution, we can obtain a computationally-
efficient implementation of (1) with another advantage: im-
munity to noise can be addressed through weighting of the
DC spectral coefficients prior to calculating the saliency map.
Examples illustrate the usefulness of the proposed method.
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2. ESTIMATION OF LOCAL SALIENCY

The statistical properties of the power spectral density (PSD)
of natural images have been studied extensively in visual sci-
ence [7, 8, 9, 10], whereby the average PSD S(f) of natural
image ensembles follows a power-law distribution in radial
spatial frequency, or

S(f) =
A

fα
. (2)

In this equation, f is the magnitude of the spatial frequency
in cycles/pixel, α is the exponent of the power-law distribu-
tion, and A is an image contrast parameter. The PSDs of im-
ages containing a greater number of objects and edges tend to
be broader than those with fewer features, such that α has a
lower value for the former class of images [10]. This behav-
ior of α coupled with the scale invariance property of power
law distributions allows us to develop direct methods for esti-
mating saliency using parametric modeling of local PSD esti-
mates, where α is an intermediate variable. In what follows,
we leverage the discrete-space nature of sampled images in
this estimation task.
The power law, also called Zipf’s law or the Pareto distri-

bution, can model many natural and man-made phenomena.
The power law for a discrete random variable k is

pk =
k−α

ζ(α)
, k ≥ 1, (3)

where α is the exponent of the power law and ζ(α) =∑∞

k=1 k−α is the Riemann zeta function. Goldstein et al.
[11] showed that maximum likelihood estimation (MLE) of
α produces a robust and accurate estimate for fitting observed
data x = xi, 1 ≤ i ≤ N to the power law distribution.
The expression for the MLE estimate of α for the Pareto
distribution is

ζ′(α)

ζ(α)
= −

1

N

N∑

i=1

log(xi) = −

∞∑

k=1

pk log(k) (4)

Since the two expressions on the right of (4) can be computed
from data, the value of α can be determined by inverse inter-
polation using a table of ζ′(α)

ζ(α) . A table relating
ζ′(α)
ζ(α) and α

can be easily pre-computed [11].
Shannon defined the entropy H(X) of a discrete random

variableX with alphabet X as

H(X) = −
∑

x∈X

p(x) log p(x) (5)

where p(x) is the probability mass function (pmf) of the dis-
crete random variable. Then, the entropy associated with a

random variable having a discrete power-law distribution is

H(α) = −

∞∑

k=1

k−α

ζ(α)
log

k−α

ζ(α)

= α
∞∑

k=1

k−α

ζ(α)
log(k) +

log(ζ(α))

ζ(α)

∞∑

k=1

k−α

= αE log(k) + log(ζ(α)) (6)

Thus, once the parameterα is estimated using (4), the entropy,
H(α) as a function of α can be calculated using (6). When k
in (6) represents discrete spatial frequency, pk is the discrete
PSD, andH(α) in (6) becomes the saliency J(α). Thus, once
α has been estimated, we can compute J(α) as

J(α) = α

∞∑

k=1

pk log(k) + log(ζ(α)). (7)

3. ALGORITHM IMPLEMENTATION ISSUES
The local saliency of an image can be calculated by estimating
the parameter α over local regions via (4) and then using the
estimated α in (7) to calculate the saliency. We now address
several practical issues in this process.
The relation between α and the random variable k for a

discrete power law distribution is as shown in (4). In the
power-law model for the PSD of a natural image, the index k
corresponds to the index of the kth discrete frequency bin, and
the value kα corresponds to the amplitude within the kth fre-
quency bin. The discrete power-law distribution in (3) is de-
fined for all 1 ≤ k < ∞, whereas the range of pk available
for processing is over 1 ≤ k ≤

(
L
2 + 1

)
which represents

the discrete spatial frequency fromDC to half the Nyquist fre-
quency where L is the dimension of the data block. We may
write (4) as

ζ′(α)

ζ(α)
= −

∞∑

k=1

pk log(k)

= −

(L

2
+1)∑

k=1

pk log(k)− C(α). (8)

where C(α) =

∞∑

(L

2
+2)

k−α

ζ(α)
log(k).

The first term on the R.H.S. of (8) is a sum of the
products of log(k) and the normalized PSD values pk for
k = 1 to

(
L
2 + 1

)
. The normalized PSD pk is a spatial

frequency histogram derived from the two-dimensional lo-
cal PSD. Using a radial spectral model is appropriate for
our aerial imaging applications, as the local PSDs of such
images exhibit an isotropic nature; thus, we obtain the one-
dimensional PSD by approximate radial averaging of the 2D
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Fig. 1. Plot of the saliency J(α) and ζ′(α)
ζ(α) versus α.

PSD [4]. The second term C(α) in (8) is dependent on α, and
its value is typically much smaller than that of the first term.
Thus, we can neglect C(α) in (8). An analysis of the trunca-
tion error resulting from neglecting C(α) is presented in [4].
The saliency maps that are produced with this approximation
are comparable to the non-model based PSD-saliency maps
proposed in [6].
Additional simplifications can be obtained by considering

the shape of J(α) as it relates to ζ′(α)
ζ(α) . A plot of J(α) and

ζ′(α)
ζ(α) versus α is shown in Fig. 1. The plot shows that ζ′(α)

ζ(α)

and J(α) varies almost inversely with α. A plot of J(α) ver-
sus ζ′(α)

ζ(α) is shown in Fig. 2(a). It can be seen that the plot
behaves nearly linearly suggesting that the saliency J(α) can
be evaluated directly from ζ′(α)

ζ(α) without calculating α. Fur-
thermore, numerical experiments indicate that the local PSD-
saliency values typically lie in the range [0, 4] for the aerial
imagery of interest. From Fig. 2(b), we see that this rela-
tionship is close to linear, and it is easily approximated using
a non-uniform lookup table with fewer density of points for
ζ′(α)
ζ(α) ≤ −1. These considerations make the use of this pro-
cedure quite practical for real-time implementation.
The calculation of local saliency can be summarized in

the following steps:

1. Calculate the 2D FFT to form the PSD vector pk within
each processing block.

2. Calculate ζ′(α)
ζ(α) by taking the inner product between the

pk and the predefined vector log(k).

3. Estimate saliency J from a lookup table containing the
values of ζ′(α)

ζ(α) and the corresponding J(α) values.

The complexity of the above approach is now considered
in terms of the numbers of multiplications, additions, and ta-
ble lookups for the method. We exclude the cost of the 2D
FFT calculation since it is common between both (1) and the
proposed approach. For a data block side of L × L pixels,

Fig. 2. Plot of J(α) versus ζ′(α)
ζ(α) . (a) Plot of J(α) versus

ζ′(α)
ζ(α) for 1.01 ≤ α ≤ 10; (b) Plot of J(α) versus ζ′(α)

ζ(α) for
0 ≤ J(α) ≤ 7. .

the method in (1) requiresL2 multiplies, L2− 1 adds, and L2

table lookups, whereas the proposed method requires L + 3

multiplies, L2

8 (L+2)+4 adds, and 2 table lookups. Thus, the
proposed method requires fewer multiplies and table lookups
at the cost of more additions.

4. NUMERICAL EVALUATIONS

We now explore the performance of the proposed method via
its application to aerial imagery. For comparison, we also
include the original PSD-based method in (1).
Fig. 3 shows an aerial image of an airport. Both the

non-parametric PSD-based method in (1) and the parametric
method described in the last section are applied to this image
using a (16 × 16) block size with a 4-pixel offset between
blocks. Fig. 4 shows the results of both methods. It can
be seen that the parametric PSD-based saliency map is very
similar to that of the non-parametric method despite it being
computationally-simpler.
Our method for calculating saliency maps does not con-

sider noise effects directly; however, in real-world systems,
noise is always present. Comparisons of the method in (1) and
the parametric method described in the last section indicate
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Fig. 3. Aerial image of an airport.

Fig. 4. (Left) Saliency map of the airport image for 16 ×
16 block size and 4-pixel offset generated using (1). (Right)
Saliency map using the proposed technique.

that the parametric method is more robust to low amounts
of additive noise as compared to the non-parametric PSD
method [4]. If the noise variance in the image is known or
can be estimated, any performance degradation can alterna-
tively be minimized by subtracting the average noise power in
each bin from the PSD vector. This technique is valid under
the assumption that the noise is white Gaussian and thus its
power is uniformly spread across the entire bandwidth. Such
a solution requires a priori knowledge.
Upon further study, however, the effects of noise were

found to be easily mitigated with the following simple change
to the PSD-based methods: Use a constant DC power for all
images that is proportional to the block size L2. Typically,
the value L2 for the DC component produced good saliency
maps in the presence of noise. Our reasoning for this choice
is as follows. The DC term of each block does not carry sig-
nificant information about the image content, so such a sub-
stitution yields no loss of information. This change also leads
to identical saliency maps for complemented images (e.g. im-
age negatives). In addition, having a constant DC power value
also renders the algorithm to be invariant to different lighting
conditions. Fig. 5 shows the airport image with additive white
Gaussian noise having a variance of 0.05 and the saliencymap
generated using the parametric PSD-saliency map estimator.
As can be seen, the proposedmethod provides good immunity
to noise effects.

Fig. 5. (left) Image of a airport with a noise variance of 0.05
in normalized scale. (right) Saliency map of the noisy airport
image using DC compensation of 8L2, for L × L, L = 16
block size and a 2-pixel offset.

5. CONCLUSIONS
Performance of multi-aperture computational imaging sys-
tems can be improved by using adaptive allocation of imaging
resources within a scene. A novel method to automatically
detect feature-rich regions within a scene using spacial fre-
quency histograms instead of the conventional intensity his-
tograms was proposed in [6]. The method generated saliency
maps of scenes using the local power spectral density within
Gilles’ saliencymap estimator. In this paper, we derive a para-
metric approach to determine the PSD based saliency maps
by modeling the 2D PSD of images as power law distribu-
tions. The model-based approach was shown to be computa-
tionally much simpler at the same time producing compara-
ble saliency maps as the non-model based methods. Detailed
analysis of the parametric method can be found in [4].
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