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ABSTRACT
We propose a sparse non-negative image coding based on
simulated annealing and matrix pseudo-inversion. We show
that sparsity and non-negativity are both important to obtain
part-based coding and we also show the impact of each of
them on the coding. In contrast with other approaches in the
literature, our method can constrain both weights and basis
vectors to generate part-based bases suitable for image recog-
nition and fiducial point extraction. We also propose a speed-
up of the algorithm by implementing a hybrid system that
mixes simulated annealing and pseudo-inverse computation
of matrices.

Index Terms— sparse coding, non-negative matrix de-
composition, image recognition, neural networks, simulated
annealing

1. INTRODUCTION

We propose a sparse non-negative coding scheme (or sparse
Non-Negative Matrix Factorization (NMF)) for part-based
image coding that can simultaneously constrain the basis
vectors and the weights. The cost function is optimized by
simulated annealing (SA) in the general case (when both
weights and bases are constrained). For the case where the
sparseness constraint is only imposed on one of the matri-
ces (either the weights or the bases), we propose a faster
algorithm. This faster algorithm uses SA to optimize the
sparse-constrained matrix (weight or basis) and performs a
matrix pseudo-inversion for the other non-constrained matrix.
Our non-negative algorithm follows from the simple pre-

scription that parts are collections of input elements that tend
to come and go together, and which can be added together in
different combinations to give objects of interest. Parts that
are too much like complete objects are rejected, because this
would require an impracticably large inventory [1]. In ad-
dition and in contrast with [2], our approach is also sparse.
In section 3.1, we show that sparseness is a crucial aspect
in extracting codes. In fact, we show that a common part
to all images (to be coded) can be extracted as a separate
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object if and only if sparseness is imposed along with non-
negativity. Furthermore, as our method consists of minimiz-
ing a cost function consisting of reconstruction error, non-
negativity, and sparseness, by using SA, it can technically im-
pose sparseness and non-negativity constraints on both the
weights and the bases. In section 3.3, we will show that
our approach outperforms the one in [3] when both weights
and bases are constrained. In addition, our proposed method
based on SA is capable of handling different types of error
and/or sparseness measures. It is a powerful tool to evalu-
ate performance for different cost functions and a first step
towards the design of a faster Hebbian-like implementation
of the optimization for the cost function with the best perfor-
mance.

1.1. Sparse Overcomplete Coding

An overcomplete bases is a set of kernels/atoms that has
more basis vectors than the dimensionality of data. Overcom-
plete representations have been advocated because they have
greater robustness in the presence of noise, can be sparser,
and can have greater flexibility in matching structure in data
[4]. In finding a representation with overcomplete bases, we
would like also to find a representation which is as sparse as
possible. Sparse coding generally refers to a representation
where a small number of elements are active.

1.2. Non-Negativity and Part-based coding

Part-based representations are important in signal processing
and artificial intelligence, since they allow us to extract the
constituent objects of a scene by extracting localized features.
Overcompleteness and sparseness, as defined in the previous
section, do not guaranty by themselves that the representation
is part-based. One way of achieving part-based analysis is the
use of non-negative kernels in a linear model. In this scheme,
since each signal is generated by adding up the positive (non-
negative) kernels, no part of the kernels can be cancelled out
by addition. Therefore, the basis vectors must be parts of the
underlying data [2]. In addition, combining sparseness and
non-negativity gives a suitable representation for signals [3].
The overall cost function may become non-convex and
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may contain local minima, since the non-negativity and
sparseness constraints are nonlinear. Hence, SA seems to
be a suitable optimization technique for this problem.

2. SPARSE NMF BASED ON SA

2.1. Mathematical Formulation of Sparse NMF

Let us assume that M images (the database) are stored in a
matrix V. Each row of V contains the N pixels of a two-
dimensional image reordered in a row. We would like to find
a linear decomposition of V = WH, where H contains as its
rows theK basis vectors (features) of the decomposition. The
M rows ofW contain the corresponding hidden components
that give the contribution of each basis vector in the input
vectors (wi,j is the projection of image i onto the jth. vector
of H−1). The goal in NMF is to find bothW and H.
However, the system of equations is underdetermined,

meaning that there are more unknowns than linearly inde-
pendent equations. We therefore, need additional constraints
to solve the problem. In this paper, we use both the non-
negativity and sparsity constraints and try to find the best fit
forW andH, so that the L2-norm ‖ V−WH ‖ is minimized.
The overall cost function to minimize is as follows:

f(W,H) = ‖ V−WH ‖ +μsparse(W) + νsparse(H);
∀ i, j wij , hij ≥ 0, (1)

where sparse(W) and sparse(H) are sparseness measures.

2.2. Simulated Annealing

There is a useful connection between statistical mechanics
and optimization. Analogy with simulated annealing in solids
led S. Kirkpatrick et al. [5] to propose an optimization strat-
egy based on this scheme.
We use a constrained and adaptive SA for the sparse NMF

coding of images as described in the next subsection.

2.3. Constrained Adaptive Simulated Annealing

We made two modifications to the original simulated anneal-
ing described in the previous section. We constrained the
search to positive solutions and adapt the temperature de-
crease to our problem. Details of our modifications follow:

• Constraint: At each iteration, values found by SA are
checked to see whether they meet the non-negativity
constraint and if they don’t, they are discarded.

• Adaptiveness: We split the simulated annealing into
three distinct zones of temperatures. At high tempera-
tures (0.1 < T < 1), simulated annealing tries a very
high number of values to find the best fit (direction).
For middle-valued temperatures (0.001 < T < 0.1)
the number of trial in SA is decreased and for very low

temperatures (T < 0.001) that number is further de-
creased to speed up SA.

2.4. Cost function of the sparse NMF with SA

The cost function must meet the following two requirements:

• It must penalize any reconstruction error that is far from
the image database in the mean square sense.

• It must penalize any basis vector that is dense and not
sparse. The sparseness measure for the corresponding
weights of each image i and for each basis vector hi

(which coordinates are hi,j) can be written respectively
as [6]:

‖wi‖α =
∑

j

|wij |α & ‖hi‖α =
∑

j

|hij |α , (2)

where ‖.‖α denotes the Lα pseudo-norm and α is set to
0.25.

Using the Lα norm as a sparsity measure, gives us the follow-
ing cost function to optimize for the application in hand:

f(W,H) = ‖V−WH‖+ βmax(
∑

i

‖wi‖α − θ1, 0) (3)

+ γmax(
∑

i

‖hi‖α − θ2, 0) ∀i, j wij , hij > 0

where θ1 and θ2 are the target sparseness for the weights and
basis vectors respectively. As soon as the targets are reached,
these constraints are set to zero. Note that there is no guar-
anty that f is unimodal for α < 1. That is why simulated
annealing is used to circumvent local minima. The cost func-
tion imposes that each basis vector hi be sparse (note that the
sparseness is not imposed on the whole matrix H but on each
basis vector separately).

2.5. Speeding up SA: Mixed Sparse NMF

In some simulations the constraint is only imposed either on
W or on H, but not on both of them. In this case, it is not
necessary to perform a simulated annealing parameter search
on both H and W. We here propose a mixed sparse NMF
coding based on both SA and matrix pseudo-inverse.
Without loss of generality, we suppose that we want to

find sparse bases (H) and non-sparse (W) (the opposite case
is also treated in the same way). We therefore propose the
following modified algorithm to accelerate the whole coding
process. The cost function to optimize is the following:

f(W,H) = |V−WH|+ sparse(H), (4)

where sparse(H) is the constraint imposed on H as described
in section 2.4. The algorithm follows:
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1. InitializeW and H.

2. Repeat iteratively until convergence through the fol-
lowing steps:

(a) Choose the best fit for H using simulated anneal-
ing.

(b) Normalize hi = hi

‖hi‖ .
The normalization is a crucial step, since in mini-
mizing ‖ V−WH ‖ elements ofH can grow very
large while elements ofW can become very small
and vice versa. However, very large values for el-
ements in H means very large values for ‖ hi ‖α

and a very slow convergence.
(c) FindW by pseudo-inversion:W = VHT (HHT )−1

(d) ReplaceW byWpos = ‖W‖+W
2 (to keepW non-

negative) and update the cost function.

However, if the sparseness constraint is imposed on both W
and H, then SA is used to optimize both matrices.

3. RESULTS

In this section we give results for our proposed sparse NMF
(with or without pseudo-inversion) for two databases.

3.1. Sparse NMF result of the swimmer database

The swimmer database consists of toy objects used to test the
effectiveness of sparse NMF algorithms [7]. The Swimmer
image library consists of 256 images of 32 × 32 pixels each.
Each image contains a torso of 12 pixels in the center and
four limbs of 6 pixels that can be in one of 4 positions (up-
left, up-right, down-left, down-right). All combinations of all
possible limb positions gives us 256 images (see Fig. 1 for
some of the combinations) with an invariant part: the torso.

Fig. 1. Some of the swimmer database configurations.

Using the mixed sparse NMF simulated annealing and
pseudo-inverse approach we obtain a part-based coding as de-
picted in Fig. 2. The sparseness constraint is imposed on H
and the parameter θ2 (see Eq. 3) is set to 13 (smaller than the
number of pixels in every two parts: limbs, torso, etc.). Com-
pared to results obtained for the swimmer database by using
Lee and Seung’s [2] original NMF, Donoho and Stodden [7]
obtained basis vectors that are less part-based than what we
have obtained by our sparse NMF approach (See Fig. 2 of
[7] for results based on Lee and Seung’s method). In fact,
the ghost of the torso is almost present in all bases with Lee

and Seung’s approach [7] [2], and in one of the bases three
parts are extracted (two limbs and a torso). However, in our
mixed simulated annealing/pseudo-inverse method, the ghost
of the torso is much less present and there is no basis vector
with three parts (in contrast with basis vectors extracted by
Lee and Seung’s [2] approach) (see Fig. 2).

Fig. 2. Coding of the swimmer database by the pseudo-
inverse plus SA sparse NMF (number of bases is set to 17).
White pixels in the image on row 1 and column 2 have val-
ues 25 times greater than values associated with the light gray
pixels (torso).

In another set of experiments, we evaluated the impor-
tance of non-negativity on the extraction of bases. To do so,
we dropped the non-negativity constraint on the bases gener-
ation (see Fig. 3). The bases are not part-based anymore.
We also examined the impact of dropping sparseness con-

straint in Fig. 4. We noticed that when no sparseness con-
straint is imposed the basis vectors are not part based.

Fig. 3. Coding of the swimmer database without the non-
negativity constraint. The bases are not part-based anymore
(not all basis vectors are shown).

3.2. Sparse NMF result on CBCL with pseudo-inversion

The CBCL face database from MIT is used to test the system.
The major characteristic of this database is that fiducial points
are not positioned at the same place in all images .
As seen in Fig. 5, the bases are part-based representations

that characterize fiducial points. Note that the original NMF
by Lee and Seung [2] gives only part-based representations
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Fig. 4. Coding of the swimmer database without the sparsity
constraint. The bases are not part-based anymore.

Fig. 5. First row: 5 pictures from the CBCL database. Rows
2-3: Some of the bases generated by the mixed SA sparse
NMF with pseudo-inversion for the CBCL-MIT database.

when the position of the fiducial points is the same in all im-
ages in the database [3] and gives holistic (non part-based)
basis when used with the CBCL database. Our proposed ap-
proach will be compared to [3] in the next section for the case
when both matrices are constrained.

3.3. Sparse NMF result with constraints on both matrices

In another set of experiments we used Hoyer’s algorithm [3]
and imposed sparseness on both W and H (30 basis vectors
are extracted). We stopped the algorithm after 2000 iterations
(when the gradient projection algorithm got stuck in a local
minimum). We ran the same experiment for our proposed al-
gorithm when bothW andH are constrained (and no pseudo-
inversion is used). Table 1 compares the sparseness (Eq. 1)
of W and H for Hoyer’s algorithm and our proposed algo-
rithm. The average and standard deviation are calculated over
all basis and weight vectors. Basically, our method gives bet-
ter average sparseness results, a wider standard deviation due
to the fact that not all fiducial points have the same size, hence
different sparseness. Our method does not get stuck in a local
minimum. Similar results are obtained when the sparseness
measure proposed in [3] is used for comparison (not included
due to lack of space).

Our method Hoyer’s method
Sparseness H W H W
Average 88.56 46.84 147.70 62.30
Standard deviation 17.20 12.05 3.97 4.79

Table 1. Sparseness comparison on CBCL. Each column gives the
average sparseness and its standard deviation for the corresponding
matrix and the method used.

4. FUTUREWORK

We used the least square error to compare the difference be-
tween the images in the training dataset and the reconstructed
images using the weights and the basis vectors. The SA pro-
cedure we are using here can be used with any cost function.
Therefore, the use of fractional distance [8] should be inves-
tigated to keep more important features in the reconstruction.
In addition, a convolutional approach such as the one in [9]
can be used to design an NMF robust to translations.

5. CONCLUSION

We proposed a probabilistic technique to robustly find a non-
negative sparse representation based on SA and simultane-
ous constraints on the basis and coefficients. We have also
shown how our accelerated method can be used when sparse-
ness constraint is imposed only on one of the matrices (W or
H). Results show that both non-negativity and sparseness are
important constraints in extracting suitable basis vectors for
the fiducial point extraction task.
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