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ABSTRACT

Compressive Sensing (CS) uses a relatively small number of

non-traditional samples in the form of randomized projections

to reconstruct sparse or compressible signals. The Hough

transform is often used to find lines and other parameterized

shapes in images. This paper shows how CS can be used to

find parameterized shapes in images, by exploiting sparseness

in the Hough transform domain. The utility of the CS-based

method is demonstrated for finding lines and circles in noisy

images, and then examples of processing GPR and seismic

data for tunnel detection are presented.

Index Terms— Compressive Sensing, Hough Transform,

Shape Detection, Basis pursuit, Convex optimization, line de-

tection

1. INTRODUCTION

The problem of detecting parameterized shapes, e.g., lines

or circles, arises in many diverse areas of image processing,

computer vision and pattern recognition. The Hough Trans-

form (HT) [1] and Generalized Hough Transform (GHT) [2]

are well-known methods to detect lines and other parameter-

ized shapes in an image. Both transforms convert the problem

of finding the spatially spread patterns in the image space into

detecting (sparse) peaks in the parameter space.

The shape-detection problem can be rephrased in terms

of the inverse GHT by asking the question: which combi-

nation of parameter domain cells represents the image data

best? In [3] the line detection problem was posed as an inverse

Radon transform1 problem plus regularization to enhance the

detection of lines. If we consider that each cell in the pa-

rameter domain corresponds to one image shape, this inverse

idea can be used to generate a dictionary of possible shapes.

Then basis pursuit [4] can be used to find the best subset of

the dictionary elements to represent the image.

Compressive Sensing (CS) [5, 6] can be viewed as a type

of basis pursuit framework, but instead of working with the

image data, it uses non-traditional samples in the form of ran-

domized projections as measurements. CS has shown that
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1The Radon transform is the same as the HT for lines

the information in the image is captured in a relatively small

number of “random” measurements. Note that our goal is not

to reconstruct the image, but rather to detect certain features.

For the case of image shape detection, we say that the image

is compressible (or sparse) if its GHT contains only a small

number of peaks. In the spirit of CS, we solve a linear pro-

gramming problem to find a sparse set of peaks in the GHT.

The locations of these peaks correspond to our detected shape

parameters.

One significant property of CS is that the required num-

ber of measurements is related to the sparsity of the signal

and exact recovery of the signal is guaranteed if the number

of measurements greater than the minimum is satisfied. CS

shows that in some sense, the best way to collect informa-

tion about images is by random projections. Imaging devices

are being built that take these types of measurements. A new

camera architecture that directly acquires random projections

of the signal without collecting every pixel has been demon-

strated [7]. This paper will talk about using the compressive

measurements taken from these devices or some otherway and

do feature detection.

This paper deals exclusively with line and circle detec-

tions using CS. We show that it is possible to detect the differ-

ent shapes jointly using the CS framework along with an over-

complete representation of shapes. The next section presents

the theory of CS shape detection.

2. SHAPE DETECTION USING COMPRESSIVE
SENSING

The Hough Transform (HT) [1] is the most commonly used

algorithm for line detection in images. The HT maps an im-

age into a parameterized domain such that lines in the image

correspond to peaks in the parameter domain. An extended

version, the Generalized Hough Transform (GHT) [2], maps

arbitrary parameterized curves into peaks in the parameter

space. The GHT can be formulated as

R(π)[f(x, y)] =
∫

f(ϕx(ξ,π), ϕy(ξ,π))dξ (1)

where π is an p-dimensional vector defining the curve param-

eters and ϕx(ξ,π) and ϕy(ξ,π) are functions that define the
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specific curve. The GHT transforms from the 2D (x, y) image

space to the p-D parameter space defined by π.

In order to express the image in terms of an overcom-

plete dictionary of possible shapes, we must discretize the

parameter vector π along each of its p dimensions. Then

we can enumerate a finite set of possible parameter vectors

P = {π1, π2, . . . ,πN}, where N depends on the discretiza-

tion that we pick. Finally, we define the vector p to be an

indicator and weight function, i.e., the kth element of p is

nonzero if we want to select (and weight) parameter πk.

Now we are ready to create the overcomplete dictionary

by using the inverse relation between the parameter space se-

lector p and the image f , which can be written as

f = Hp (2)

where H is, in some sense, an inverse GHT operator. The

L × L image must concatenated into a length-L2 vector f .

Each column of H is one possible parameterized shape in

the image domain, i.e., the kth column of H corresponds

to the shape with parameters πk. The matrix H is called

the sparsity basis because we can represent the image using a

small number of columns from H . We say that the image is

K-sparse if its GHT has no more than K nonzero peaks, or,

equivalently, the vector p has no more than nonzero elements.

Consider our K-sparse signal p of length N as our param-

eter space signal where the image f is represented as in (2).

In CS rather than sampling all the pixels in the image f we

measure linear projections of f into a second set of basis vec-

tors φm, m = 1, 2, ...M . Here many fewer samples than the

size of p are taken, M � N . In matrix notation we measure

y = Φf = ΦHp (3)

The result of CS theory is that sparse parameter domain

signal p can be recovered exactly from

M = C
(
μ2(Φ, H) log N

)
K (4)

CS measurements y by solving an �1 minimization problem

as

p̂ = argmin ‖p‖1 s.t. y = ΦHp (5)

with overwhelming probability [6], where μ(Φ, H) is the co-

herence between Φ and H defined as in [6]

The optimization problem in (5) is valid for the noiseless

case. For noisy compressive measurements in the form

y = Ap + z zk ∼ N (0, σ2) (6)

where A = ΦH , the following optimization problems will

recover the sparse p. The Dantzig Selector [8, 9] recovers the

sparse p. Instead of (5) the following convex optimization

problem is solved.

min ‖p‖1 s.t. ‖AT (y − Ap)‖∞ < λNσ (7)

Equation (7) is called the Dantzig selector [8] and selecting

λN =
√

2 log N makes the true p feasible with high proba-

bility. Another possible solution comes from constraining the

�2-norm of the error in measurements to be less than some ε.

min ‖p‖1 s.t. ‖y − Ap‖2 < ε (8)

Greedy algorithms like Matching Pursuit (MP) and orthogo-

nal matching pursuit (OMP) [10] are also used to find a sparse

description for the measured data. However, only OMP is

guaranteed to converge to a sparse solution [11]. The param-

eters in (7) and (8) need to be estimated or properly selected.

Cross validation [11] is shown to be a good solution about se-

lecting the parameters or stopping conditions. Results from

the above stated algorithms are shown in Section 3.

The optimization problems in (5) and (7) can be solved by

linear programming techniques, while (8) is a second-order

cone program. Since all of these minimize convex function-

als, a global optimum is guaranteed. In [3] a non-convex

functional is used as a regularizer, but the resulting station-

ary point is not necessarily the global minimum.

3. RESULTS

3.1. Detecting Linear Structures

An important application of shape detection is detecting lin-

ear structures in images. Figure 1 shows a noisy gray-scale

image with 3 lines having the parameters ρ = [−3, 21,−27]
and θ = [33, 132, 153] degrees. The image is 50 × 50, i.e.,

2500 pixel values. For detecting lines in the image only 400

projections (compressive samples) of the image with random

Gaussian vectors are used. The compressive samples, y ,

of the noisy image are shown in Fig. 1(c). We assume that

these samples are the only information we have about the im-

age and our goal is to find the linear structures in the image.

One possible reconstruction is to find the parameter space im-

age which has minimum �2-norm that satisfies the compres-

sive measurements. The result is the parameter space image

shown in Fig. 1(d). This solution is a feasible solution be-

cause it satisfies the constraint y = Ap, but this parameter

space image doesn’t give any reliable information about pos-

sible line locations.

If the problem stated in (7) is solved, the parameter space

image shown in Fig. 1(f) is obtained. It can be seen that the re-

sultant image is sparse with 3 peaks corresponding to the true

line parameters. If we had the information about all the pixels

of the image and had applied the standard Hough transform

to the original image we would obtain the image in Fig.1(e).

Even though the Hough transform image shows 3 significant

peaks, it is more noisy, and it requires L2 measurements (all

the pixels in the image).
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Fig. 1. (a) Image showing true line locations, (b) Noisy image

with additive white Gaussian noise (σ = 0.5), (c) Compres-

sive measurements, (d) Parameter space image obtained with

�2-norm minimization, (e) Hough Transform using all the im-

age pixels, (f) �1-minimization using the Dantzig Selector.

3.2. Joint Detection of Circles and Lines

The standard Hough Transform calculates the votes for each

parameter space value. To detect circles in an image a HT

with circle parametrization should be taken and the peaks in

the parameter space should be searched. The same procedure

should be repeated for the same image for detecting lines with

creating a separate parameter space using line parametriza-

tion. Having different shapes in the image might be problem-

atic since line pixels will be voted for varying circle parame-

ters or vice versa. But the proposed procedure for detecting

shapes allows joint detection of different shapes in the image.

We can relate the image f to the parameter space of lines and
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Fig. 2. (a) Noisy image with additive white Gaussian noise

(σ = 0.2), (b) �1-minimization by Dantzig Selector.

circles using an overcomplete dictionary of shapes.

f =
[
H l Hc

] [
pl

pc

]
⇒ y = Φf (9)

where H l and Hc are the sparsity basis and pl and pc are the

parameter spaces for line and circle respectively. The sparse

parameter space (pl pc) can be reconstructed using one of

the convex optimization problems presented in Section 2 from

compressive measurements y.

Figure 2 shows a noisy gray-scale image containing two

circles with centers at (10,−6) and (−18, 4) and radii 22 and

28, respectively, and two lines with parameters ρ = [−3, 21]
and θ = [33, 132]. Only 500 compressive measurements are

used. The joint optimization problem in (7) is solved and the

resultant joint parameter space is shown in Fig. 2(d).

3.3. Detecting Buried Pipes in Seismic or GPR Images

One possible application of shape detection is finding buried

structures in subsurface images. Figure 3(a) shows backpro-

jected seismic surface energy image taken over a buried pipe

[12]. The standard HT of the image is shown in Fig. 3(b).

The two peaks in Hough domain corresponding to the two

linear structures in the image can be observed. For detect-
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Fig. 3. (a) Experimental Backprojected Seismic Image, (b)

Hough Transform of the image, (c) Parameter space image

using OMP with cross validation algorithm.

ing lines in the image only 400 compressive samples of the

image with random Gaussian vectors are used. The param-

eter space is reconstructed using OMP algorithm with cross

validation [11]. From the 400 measurements 350 are used

for OMP and 50 measurements are used for cross validation.

The OMP algorithm is stopped when the norm of the error,

‖ycv − Ap‖2 starts to increase. Here ycv are cross valida-

tion measurements and p is the parameter space at the current

iteration. This will reduce the overfitting of OMP to explain

some portion of the noise or underfitting which is not to fully

reconstruct p. The result of the applied algorithm is shown in

Fig. 3(c). A much cleaner and sparser image than the stan-

dard HT is obtained with two peaks only. This way there is

no need to search for local maximums in HT domain to de-

tect the lines. The parameters of the detected two peaks are

ρ = [−10, 82] and θ = [87, 93]. The corresponding lines are

drawn on the original image in Fig. 3(a).
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3.4. Performance in Noise

To analyze the performance of the algorithm with varying

noise levels the algorithm is applied to images with SNRs

from −25 dB to 10 dB. At each SNR level one random lin-

ear structure is corrupted by WGN with zero mean and cor-

responding variance. The Dantzig selector is used to detect

the linear structure parameters. This procedure is repeated

50 times with random initialization of noise at each time and

correct detections are counted. The detection ratio vs. SNR

plot for different compressive measurements are shown in

Fig. 4(a).
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Fig. 4. (a) Detection ratio vs. SNR , (b) Detection ratio vs.

measurement number for varying types of random matrices

(Solid, dash and diamond marked dotted lines correspond to

1, 2, and 3 targets respectively).

It can be observed that proposed algorithm detects shapes

in very noisy images using a small number of measurements

and increasing the number of measurements increases the de-

tection ratio for the same SNR value.

3.5. Test on Number of Compressive Measurements

For exact recovery of K-sparse signals the required number

of compressive measurements is given by (4). This quantity

depends on the mutual coherence between the sparsity basis

and the random projection matrix used. Here three different

types of random matrices are tested (see Fig. 4(b)). The en-

tries of the Type I random matrix are drawn from N (0, 1).
The Type II random matrix has random ±1 entries with prob-

ability of 1/2, and the Type III random matrix is constructed

by randomly selecting some rows of an identity matrix of size

N which amounts to measuring random pixels of the image

at each measurement. Each matrix is normalized to have unit

norm rows.

The average mutual coherence between the random ma-

trices and the sparsity basis for a line are μ1 = 5.2751, μ2 =
5.0059 and μ3 = 12.7500 for Type I, II and III random ma-

trices respectively. This means that the required number of

compressive measurements to detect a shape will be similar

if Type I or II matrices are used. Using Type III matrix will

require approximately 6.5 times more compressive measure-

ments for the same detection capability.

A Monte-Carlo simulation is done to test the required

number of compressive measurements for each random ma-

trix type. Each random matrix is tested with 1, 2 and 3 shapes

in the image. Figure 4(b) shows detection ratio for varying

measurement numbers. It can be observed that the required

compressive measurement number increases for all types of

random matrices when used with an increasing number of

targets. While Type I and II random matrices require similar

number of measurements, Type III random matrices require

many more measurements to detect the same number of tar-

gets as expected from the mutual coherence given above.
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