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ABSTRACT

Hidden Markov models using finite Gaussian mixture models as
their hidden state distributions have been applied in modeling of time
series that result from various noisy signals. Nevertheless, Gaussian
mixture models are well-known to be highly intolerant to the pres-
ence of outliers within the fitting sets used for their estimation. Fi-
nite Student’s-t mixture models have recently emerged as a heavier-
tailed, robust alternative to Gaussian mixture models, overcoming
these hurdles. To exploit those merits of Student’s-tmixture models,
we introduce in this paper a novel hidden Markov chain model where
the hidden state distributions are considered to be finite mixtures of
multivariate Student’s-t densities and we derive an algorithm for the
model parameters estimation under a maximum likelihood frame-
work. We apply this novel approach in automatic gesture recognition
and we show that our model provides a substantial improvement in
data representation performance and computational efficiency over
the standard Gaussian model.

1. INTRODUCTION

The hidden Markov model (HMM) is increasingly being adopted
in applications since it provides a convenient way of modeling ob-
servations appearing in a sequential manner and tending to cluster
or to alternate between different possible components (subpopula-
tions). Specifically, HMMs with continuous observation densities
(continuous HMMs, CHMMs) have been used in a wide spectrum
of applications in ecology, encryption, image understanding, speech
recognition, handwriting recognition, emotion recognition based on
facial expression classification, gesture recognition etc. [1].

The hidden observation densities associated with each state of a
CHMM must be capable to approximate arbitrarily complex prob-
ability density functions. Finite Gaussian mixture models (GMMs)
are the most common selection of hidden state distribution models in
the CHMM literature, yielding the so-called Gaussian HMMs (GH-
MMs) [2]. Nevertheless, it is well-known that GMM estimation can
be adversely affected by the presence of untypical data (outliers) in
the data sets used for the model fitting. To address these issues, Peel
et al. in [3] proposed the finite mixture of multivariate Student’s-t
distributions model (SMM) as a highly tolerant to outliers alternative
to GMMs. It has been shown (see e.g. [3, 4]) that SMMs can model
sufficiently well the hidden patterns of the data under examination,
even under the presence of significant proportions of outliers, cases
where the GMMs yield a relatively poor performance.

It is a natural consequence of the outlier intolerance of GMMs
that CHMMs using GMMs as their hidden state densities do also

suffer from the same outlier intolerance related issues. In modern
CHMM literature, various efforts have been made towards the atten-
uation of these shortcomings of GHMMs (see e.g. [5, 6, 7]). How-
ever, all these methods have significant drawbacks, among which
we might mention the heuristic nature of their majority as well as
the application-specific nature of many of them. In this paper, we try
to tackle these issues by proposing a novel CHMM where the hidden
state distributions are modeled using finite mixtures of multivariate
Student’s-t densities, allowing for the exploitation of the outlier tol-
erance merits of SMMs in the context of sequential data modeling
techniques using continuous hidden Markov chain models; the so-
obtained Student’s-t hidden Markov model (SHMM) provides the
effective, computationally efficient and generic means for the out-
lier tolerant representation and classification of sequential data using
CHMMs.

We consider the application of the SHMM model in automatic
gesture recognition. Gaussian hidden Markov models are the stan-
dard statistical technique used to recognize and identify gestures [8].
Gesture recognition has many uses, such as helping surgeons per-
form operations and improving security, surveillance, and military
applications. However, the related technology still faces major chal-
lenges one of the most significant being the problem of making these
systems more accurate and robust to outliers, that inevitably com-
prise a significant proportion of the obtainable data, due to the nature
of the gesture visual signals [8]. Under this motivation, we apply the
SHMM in automatic gesture recognition, providing an insight in the
advantages of the proposed model and showing that our model com-
pletely outperforms GHMMs.

The organization of the remainder of this paper is the following:
in Section II the SHMM model is formulated. In Section III, a mul-
tiple token treatment of the SHMM under the maximum-likelihood
framework is conducted, using the expectation-maximization algo-
rithm. In Section IV, we apply the proposed model in automatic
gesture recognition and show that it completely outperforms Gaus-
sian HMMs. Finally, in the concluding section, the results of this
paper are summarized and discussed.

2. THE PROPOSED MODEL

The adoption of the multivariate Student’s-t distribution provides a
way to broaden the Gaussian distribution for potential outliers. The
probability density function (pdf) of a Student’s-t distribution with
mean vector μ, positive definite inner product matrix Σ, and ν de-
grees of freedom is [9]

t(yt; μ,Σ, ν) =
Γ
`

ν+p
2

´ |Σ|−1/2(πν)−p/2

Γ (ν/2){1 + d(yt,μ;Σ)/ν}(ν+p)/2
(1)
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where p is the dimensionality of yt, d(yt,μ;Σ) is the squared Ma-
halanobis distance between yt,μ with covariance matrix Σ, and
Γ (s) is the Gamma function.

The definition of the proposed Student’s-t hidden Markov model
(SHMM) is derived by assuming a finite state-space hidden Markov
chain model where the hidden state densities are considered to be
finite mixtures of Student’s-t distributions.

The multiple token ML treatment of the SHMM model can be
conducted by using the EM algorithm [10]. Let us consider M
independent sequences of fitting data. We assume for convenience,
that all the sequences have the same length T , i.e. comprising
T data points, without any loss of generality. Let the m-th se-
quence be ym = {ymt}T

t=1, m = 1, ...,M , where ymt stands
for the t-th data point of the m-th fitting sequence. Let us denote
as smt the state indicator vectors of the observable data, where
smt = (s1mt, ..., sgmt), where simt is one or zero, according
to whether ymt is viewed as being emitted, or not, from the i-th
state of the model (i = 1, .., g). Let us also denote as zi

mt the
state-component indicator vectors of the observable data, where
zi

mt = (zi
1mt, ..., z

i
nmt), and zi

jmt = 1 if, given that ymt is emit-
ted from the i-th state of the model, it holds that it is particularly
generated from the j-th component density of the i-th state’s hidden
distribution, zi

jmt = 0 otherwise.
Then, the probability density function of an observation ymt,

given it is emitted from the i-th state of the model, is given by

p(ymt;Θi) =
nX

j=1

cijt(ymt; μij ,Σij , νij) (2)

where, cij , μij , Σij and νij are the mixing proportion, mean, preci-
sion and degrees of freedom of the j-the component density of the i-
th state of the model, respectively. Furthermore, from the properties
of the Student’s-t distribution [9] it can be shown that, equivalently,
it holds

p(ymt|{uijmt}n
j=1;Θi) =

nX
j=1

cijN (ymt; μij ,Σij/uijmt) (3)

where, N (ymt; μij ,Σij) stands for a Gaussian distribution, and
uijmt is a Gamma-distributed precision scalar of the observable data
point ymt, given it is generated from the j-th component density of
the i-th hidden state distribution, and it holds

uijmt ∼ G
“νij

2
,
νij

2

”
(4)

As far as the application of the EM algorithm for the ML mul-
tiple token treatment of the SHMM model is concerned, letting the
complete data corresponding to the m-th sequence, ycomp

m , be the
observable data ymt, t = 1, ..., T , m = 1, ...,M , their state in-
dicator vectors, smt, their state-component indicator vectors, zi

mt,
and their corresponding precision scalars, uijmt, the complete data
log-likelihood of the model reads

logLc(Ψ) =
MX

m=1

gX
i=1

"
sim1logπi +

TX
t=1

simtlogp(ycomp
mt ;Θi)

#

+
MX

m=1

gX
h=1

gX
i=1

T−1X
t=1

shmtsim,t+1logπhi

(5)

where Ψ is the parameter vector of the model, containing the cij

and νij , and the elements of the μij and Σij , ycomp
mt stands for

the complete data corresponding to the t-th observation of the m-
th sequence, ymt, and logp(ycomp

mt ;Θi) is the complete data log-
likelihood of the hidden distribution (SMM) of the i-th state of the
SHMM model, with respect to the observation ymt. Concerning this
latter quantity, from eq. (3) - (4) we yield

logp(ycomp
mt ;Θi) =

nX
j=1

zi
jmt

n
−logΓ

“νij

2

”
+
νij

2

h
log
“νij

2

”

+loguijmt − uijmt] − uijmt

2
d(ymt,μij ;Σij) − 1

2
log|Σij |

+logcij}
(6)

The E-step on the (k+1)-th iteration of the EM algorithm re-
quires the calculation of the quantity

Q(Ψ;Ψ(k)) = EΨ(k)(logLc(Ψ)|y) (7)

which is the conditional expectation of the complete data log-
likelihood given the fitting data, y = {ym}M

m=1, where Ψ(k)

denotes the current estimator (obtained by the k-th iteration of the
EM algorithm) of Ψ. Using (5) we obtain

Q(Ψ;Ψ(k)) =
MX

m=1

gX
h=1

"
γ

(k)
hm1logπh +

gX
i=1

T−1X
t=1

γ
(k)
himtlogπhi

#

+
MX

m=1

gX
i=1

TX
t=1

γ
(k)
imtEΨ(k) (logp(ycomp

mt ;Θi)|y)

(8)

where γ
(k)
imt denote the current estimators of the state emission pos-

terior probabilities, defined as

γimt � p(simt = 1|y) = p(simt = 1|ym) (9)

(t = 1, ..., T ) and γ
(k)
himt denote the current estimators of the state

transition posterior probabilities, defined as

γhimt � p(sim,t+1 = 1, shmt = 1|y) (10)

(t = 1, ..., T − 1) for m = 1, ...,M , h, i = 1, ..., g.
Let us begin with the posterior probabilities γimt and γhimt.

The updates of these quantities can be computed on the (k+1)-th iter-
ation of the EM algorithm utilizing the forward-backward recursions
algorithm. It holds [2, 1]

γ
(k)
himt =

a
(k)
hmtπ

(k)
hi p(ym,t+1;Θ

(k)
i )b

(k)
im,t+1Pg

υ=1

Pg
φ=1 a

(k)
υmtπ

(k)
υφ p(ym,t+1;Θ

(k)
φ )b

(k)
φm,t+1

(11)

(t = 1, ..., T − 1) and

γ
(k)
imt =

a
(k)
imtb

(k)
imtPg

h=1 a
(k)
hmtb

(k)
hmt

(t = 1, ..., T ) (12)

where

a
(k)
im1 = π

(k)
i p(ym1;Θ

(k)
i ) (13)

a
(k)
im,t+1 = p(ym,t+1;Θ

(k)
i )

gX
h=1

a
(k)
hmtπ

(k)
hi (t = 1, .., T − 1) (14)

b
(k)
hmT = 1 (15)
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b
(k)
hmt =

gX
i=1

π
(k)
hi p(ym,t+1;Θ

(k)
i )bim,t+1 (t = T − 1, ..., 1) (16)

Finally, concerning the term EΨ(k) (logp(ycomp
mt ;Θi)|y), from

eq. (6) it can be shown that the derivation of this quantity is even-
tually reduced to the computation of the conditional posterior prob-
abilities that ymt is generated from the j-th component distribution
of the i-th state of the SHMM, given that it is emitted from the i-th
state of the model, yielding

ξ
(k)
ijmt � EΨ(k)(z

i
jmt|ymt, simt = 1)

=
c
(k)
ij t(ymt; μ

(k)
ij ,Σ

(k)
ij , ν

(k)
ij )Pn

h=1 c
(k)
ih t(ymt; μ

(k)
ih ,Σ

(k)
ih , ν

(k)
ih )

(17)

as well as the computation of the posterior expected values of the
precision scalars, uijmt, of the observable data

u
(k)
ijmt � EΨ(k) (uijmt|ymt)

=
ν

(k)
ij + p

ν
(k)
ij + d(ymt,μ

(k)
ij ;Σ

(k)
ij )

(18)

Further, the M-step of the multiple token EM fitting of the
SHMM model is derived as follows

π
(k+1)
i =

1

M

MX
m=1

γ
(k)
im1 (19)

π
(k+1)
hi =

PM
m=1

PT−1

t=1
γ

(k)
himtPM

m=1

PT−1
t=1 γ

(k)
hmt

(20)

c
(k+1)
ij =

MX
m=1

TX
t=1

r
(k)
ijmt/

MX
m=1

TX
t=1

γ
(k)
imt (21)

μ
(k+1)
ij =

PM
m=1

PT
t=1 r

(k)
ijmtu

(k)
ijmtymtPM

m=1

PT
t=1 r

(k)
ijmtu

(k)
ijmt

(22)

Σ
(k+1)
ij =

MX
m=1

TX
t=1

r
(k)
ijmtu

(k)
ijmt(ymt − μ

(k+1)
ij )(ymt − μ

(k+1)
ij )T

×
"

MX
m=1

TX
t=1

r
(k)
ijmt

#−1

(23)

while, the degrees of freedom, νij , are given by the solution of the
equation

1 − ψ
“νij

2

”
+ log

“νij

2

”
+ ψ

 
ν

(k)
ij + p

2

!
− log

 
ν

(k)
ij + p

2

!

+
1PM

m=1

PT
t=1 r

(k)
ijmt

MX
m=1

TX
t=1

r
(k)
ijmt

“
logu

(k)
ijmt − u

(k)
ijmt

”
= 0

(24)

where, ψ(s) is the digamma function and r
(k)
ijmt is the joint posterior

probability that ymt is generated from the i-th state of the model and
particularly from its j-th component distribution, i.e. it holds

rijmt � p(simt = 1, zi
jmt = 1|y) = γimtξijmt (25)

A final issue concerns the conception of a computationally effi-

cient solution to the calculation of the likelihood p(y
′
1, ...,y

′
T ; Ψ̂) of

a sequence of data, y
′
= {y′

t}T
t=1, with respect to a trained SHMM.

Such a result, holding for every finite state-space hidden Markov
chain model, ignorantly to the particular selection of its hidden state
distributions, is obtained by application of the forward-backward al-
gorithm; in particular, it holds [1, 2]

p(y
′
1, ...,y

′
T ; Ψ̂) =

gX
i=1

âiT (26)

where, the âiT are obtained by application of the forward-backward

recursions algorithm for the given data sequence, y
′
, using the al-

ready obtained SHMM model parameters estimator, Ψ̂.

3. GESTURE RECOGNITION USING THE SHMM

We apply the proposed method in the problem of bimanual gesture
recognition. For this purpose we use a test set comprising 16 dif-
ferent bimanual gestures, which are characterized by several self oc-
clusions. More specifically, we experiment with the American Sign
Language gestures for the words: "against", "aim","balloon", "ban-
dit", "cake", "chair", "computer", "concentrate", "cross", "deaf", "ex-
plore", "hunt", "knife", "relay", "reverse" and "role".

The considered data set, publicly and freely available through
the site http://www.iit.demokritos.gr/∼dkosmo/downloads/gesture,
has been obtained by four different persons executing each one of
these gestures. It comprises a training set, including 30 videos of
variable duration per gesture, and a test set composed of 10 videos
per gesture. Using these raw data, we extract a number of represen-
tative features suitable to formulate the observation vectors required
to train and evaluate statistical models.

These considered features represent the relative position of the
hands and the face in the images, as well as the shape of the respec-
tive skin regions and are derived using the complex Zernike moments
(see e.g., [11]). The Zernike moments have been selected as region
descriptors due to their high representation capabilities and noise re-
siliency. More specifically the observation is given by the vector

y = (y1, ..., y8, y9, ...., y16)

where the variables y1 to y8 represent the left hand region, and the
rest the right hand. The y1, y2 are the distance and the angle of
the left hand region from the center of gravity of all skin regions.
y3 to y8 are the non-constant norms and arguments of the complex
Zernike moments, up to third order. The rest vector elements for the
right hand region are calculated in the same fashion.

The following assumptions additionally hold: (a) if a hand does
not appear in the image, the related fields are set to zero, (b) if the
hands occlude each other or both occlude the face, the observations
corresponding to the two hands are identical and equal to the values
extracted from the "common" region (c) if a hand occludes the face,
the corresponding observations are calculated based on the "com-
mon" region. Thus we are able to represent the observations also in
the case of occlusions. The skin segmentation can be done using a
skin model and the region labeling using a method such as the one
presented in [12].

In our experiments we use directly ground truth data to elimi-
nate the effect of labeling errors. We model the considered gestures
using one 3-state SHMM per gesture, considering diagonal preci-
sion matrices. The trained models are evaluated by classifying the
test data to the trained models under a maximum a posteriori (MAP)
probability classification fashion. To obtain some comparative re-
sults, we also train and evaluate a 3-state GHMM per gesture with
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Table 1. Average Obtained Recognition Error Rate Over 30 Runs of
the EM Algorithm

Gesture SHMM with n = 9 GHMM with n = 10

against 0.23% 1.2%

aim 0.27% 0.89%

balloon 5.21% 7.94%

bandit 0.16% 0.92%

chair 15.24% 29.8%

cake 14.87% 20.35%

computer 7.1% 8.03%

concentrate 13.82% 20.07%

cross 19.7% 30.47%

deaf 0.48% 4.69%

explore 5.03% 7.73%

hunt 20.75% 33.12%

knife 13.53% 27.64%

relay 0.54% 6.85%

reverse 4.55% 10.05%

role 0.55% 2.23%

Average 7.62% 13.25%

diagonal precision matrices. This experiment is repeated for various
numbers of component densities per state, n, and the lowest number
yielding the highest recognition rate for each model is determined.
In Table 1 we provide for each gesture the average recognition error
rate obtained over 30 runs of the EM algorithm with different start-
ing points, using the SHMM and GHMM models for the number of
component densities per state, n, yielding their highest classification
performance.

As we notice, using SHMMs to model the considered gestures
we yield a considerably higher recognition performance comparing
to the performance obtained by using GHMMs for a lower number of
component densities per state. On average, the SHMM models yield
a 42.49% lower recognition error rate comparing to the GHMMs.

4. CONCLUSIONS

In this paper we proposed a novel hidden Markov model, considering
the selection of the HMM hidden state densities as being of multi-
variate Student’s-t form. The proposed model is especially suitable
for the statistical modeling of signals inherently containing signif-
icant proportions of artifacts and outliers, cases where the conven-
tional Gaussian HMMs yield a rather poor performance.

Several applications that require modelling and classification of
time series that contain outliers are expected to benefit from our
work. The investigation of such applications is part of our future
work. Here, we considered the application of this model in auto-
matic gesture recognition, a challenging computer vision application
where artifacts and outliers have significant effects in classification
performance. Our results have provided the tangible evidence about
the efficacy of our novel approach.

We finally outline that the proposed model imposes a computa-
tional burden comparable to that of the conventional GHMMs, as its
major computational load stems from the calculation and inversion
of empirical precision matrices, as is also the case with the GHMMs.
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