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Abstract: An un-unconstrained optimization problem involving
logarithmic cost function that incorporates a diagonal matrix is uti-
lized for deriving gradient dynamical systems that converge to the
principal singular components of arbitrary matrix. The equilibrium
points of the resulting gradient systems are determined and their
stability is thoroughly analyzed. Qualitative properties of the pro-
posed systems are analyzed in detail including the limit of solutions
as time approaches infinity. The performance of this system is also
examined.
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1 Introduction
The need for computing only a few singular vectors of a data matrix
arises in many algorithmic development in scientific and engineering
applications. Many methods are available for computing the singular
value decomposition (SVD) of a rectangular data matrix [1]. These
methods compute the whole set of singular or eigenvectors when only
a few vectors are desired. Thus the main objective of this paper
is to develop dynamical systems for solving the principal singular
component analysis (PSCA) problems. Additionally, understanding
the properties and features of such dynamical systems is helpful in
determining domains of attractions and invariant sets of many prin-
cipal singular subspace (PSS) and principal and minor components
(PCA/MCA) dynamical systems.

There are many adaptive methods in the literature to obtain the
PSA, MSA and PSS from a given data. SVD dynamical systems
are developed in [2]-[8]. Algorithms for computing smallest singular
triplets are proposed in [9]. Generalization of Oja’s algorithm for
obtaining the SVD of a rectangular matrix is considered in [10, 11].
Cross-correlation neural network for extracting the cross-correlation
features between two high-dimensional data streams is developed in
[12] and [8].

There are a number of methods for extracting principal or the mi-
nor subspaces of a positive definite matrix, however, there appears
to be fewer algorithms for PSS in the literature. In this paper, sev-
eral dynamical systems for computing PSS are derived and analyzed.
Some of these algorithms may be considered as generalizations of
principal components flows. The proposed dynamical systems con-
verge to individual singular vectors by incorporating a diagonal ma-
trix. Additionally, these systems are stable and self-normalized.

The following notation will be used throughout. The notation
IR, and IN denote the set of real numbers, and the set of positive
integers. The transpose of a real matrix is denoted by xT , and the
derivative of x with respect to time is written as x′. If B is a square
matrix, then tr(B) denotes the trace of B. The identity matrix of
appropriate dimension is expressed with the symbol I. Finally, the
derivative of V (x, y) with respect to time is denoted by V̇ .

2 Preliminary Results
For completeness, basic concepts from dynamical system theory are
summarized in this section. These include Lyaunov and Lagrange
stability.

2.1 Stability of Dynamical Systems
The Lyapunov direct method provides a convenient way of proving
stability of equilibria, as Lyapunov’s theorem can be used without

solving the associated differential equations. However, it is not al-
ways easy to construct Lyapunov functions or test their time deriv-
atives for non-negative definiteness.

Let g(x) : IRn×p → IRn×p, p ≤ n, be continuously differentiable
function and consider the dynamical system

x′ = g(x). (1)

The point x̄ is an equilibrium point for the system (1) if g(x̄) = 0. Let
Ω ⊂ IRn×p be a region containing x̄ and V : Ω → IR be continuously
differentiable function such that V (x̄) = 0 and V (x) > 0 for each

x̄ �= x ∈ Ω, i.e., V is positive definite. Assume also that V̇ (x) ≤ 0
for each x ∈ Ω, i.e., V is negative semi-definite. Then x̄ is stable
and V is called a Lyapunov function for the system (1) at x̄ ∈ Ω.
If V (x) < 0 for each x̄ �= x ∈ Ω, then x̄ is asymptotically stable. If
in addition to these conditions, we have the function V is radially
unbounded, i.e., V (x) → ∞ as ||x|| → ∞, then the system is globally
stable. The main advantage of using Lyapunov direct method is that
Lyapunov theorem can be used to prove stability of equilibria without
solving the differential equations. However, constructing Lyapunov
functions is not always an easy task. It should be noted that many
Lyapunov functions may exist for the same problem. However, a
specific choice of Lypunov functions may provide more useful results
about the system than others.

Geometrically, the condition V̇ ≤ 0 implies that when a trajectory
crosses the level surface V (x) = c, it moves inside the set Ω2 = {x ∈
IRn×p : V (x) ≤ c} and remains there. Since V is positive definite,
then Ω2 is bounded and closed, thus the system must converge to
some limiting value.

A set S is an invariant set for the system (1) if every trajectory
x(t) which starts from a point in S remains in S for all time. For
example, any equilibrium point is an invariant set. The domain of
attraction of an equilibrium point is also an invariant set.

Next, we state a few stability results for nonlinear autonomous
systems. The invariant set theorems reflect the intuition that the
decrease of a Lyaunov function V has to gradually vanish. In other
words V̇ has to converge to zero because V is lower bounded. Proofs
of the results below can be found in [13]-[15].

Theorem 1 (Local Invariant Set Theorem). Consider an au-
tonomous system of the form x′ = g(x), with g continuous and let
V (x) : IRn → IR be a scalar function with continuous first partial
derivatives. Assume that

1. for some l > 0, the set Ωl defined by V (x) ≤ l is bounded.

2. V ′(x) ≤ 0 for all x in Ωl.

Let R be the set of all points within Ωl where V ′(x) = 0 and M be
the largest invariant set in R. Then, every solution x(t) originating
in Ωl tends to M as t → ∞.

Proof. See Slotine and Li (1991) [13] and [14].
In Theorem 1, the word largest means that M is the union of all

invariant sets within R. Notice that R is not necessarily connected,
nor is the set M .

To analyze systems involving a matrix A ∈ IRn×m, m ≤ n, it will
be assumed that the singular value decomposition of A is

A = uΣvT + u2Σ2vT
2 , (2)

where Σ = diag(σ1, · · · , σp) and Σ2 = diag(σp+1, · · · , σm) are diago-
nal matrices so that σi > σj for i = 1, · · · , p and j = p+1, · · · , m. The
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matrices u ∈ IRn×p, v ∈ IRm×p, u2 ∈ IRn×n−p, and v2 ∈ IRm×n−p

are orthogonal, i.e., uT u = I, vT v = I and uT
2 u2 = I, vT

2 v2 = I,

uT u2 = 0, vT v2 = 0. It can be easily verified that the matrix

U =
1√
2

[
u −u
v v

]
, (3a)

is orthogonal, i.e., UT U = I, and that

UT ĀU =

[
Σ 0
0 −Σ

]
, (3b)

where

Ā =

[
0 A

AT 0

]
. (3c)

Thus Ā can be expressed as

Ā = UΣ̄UT + U2Σ̄2UT
2 , (3d)

where

Σ̄ =

[
Σ 0
0 −Σ

]
, Σ̄2 =

[
Σ2 0
0 −Σ2

]
,

U2 =
1√
2

[
u2 −u2

v2 v2

]
.

(3e)

Note that U2 is orthogonal, i.e., UT
2 U2 = I.

In the next section, the gradient and the Hessian matrices for
some matrix functions are given using the first and second order
differentials.

2.2 First and Second Order Differentials
Let F : U → IR, where U ∈ IRn×p, be twice continously differentiable
function, and let x ∈ U and dx ∈ IRn×p. Then the first and second
order differentials of F at x in the direction of dx are defined by

dF (x, dx) =
dF (x + εdx)

dε
|ε=0, (4a)

and

d2F =
d2F (x + εdx)

dε2
|ε=0. (4b)

The quantity dF (x, dx) is sometimes called the Gateaux derivative
of F at x in the direction of dx.

To compute the gradient and the Hessian matrix for a cost func-
tion F , the first and second order differentials need to be derived
first. In the next result, the first and second order differentials for
linear, quadratic, and quartic functions are computed.

Theorem 2. Let E ∈ IRn×n, and let F : IRn×p → IR be twice
continuously differentiable function such that F (z) = tr{log(zT Ez)},
where z ∈ IRn×p. Then the first order differential of F is

dF = tr{(zT Ez)−1(dzT Ez + zT Edz)}, (5a)

and the second order differential of F is

d2F = 2tr{(zT Ez)−1dzT Edz}
− tr{(zT ET z)−1zT ET dz(zT ET z)−1zT ET dz

− 2tr{(zT Ez)−1dzT Ez(zT Ez)−1zT Edz

− tr{(zT Ez)−1zT Edz(zT Ez)−1zT Edz.

(5b)

Proof: The proof is a direct application of the definitions (5a), (5b)
and properties of the trace operator.

2.3 Gradient and Hessian Matrices
The gradient and Hessian matrices can be obtained from first and
second order differentials as the following lemma [16].

Lemma 3. Let φ be a twice differentiable real-valued function of an
n × p matrix. Then, the following relationships hold:

dφ(X) = tr(AT dX) ⇔ ∇φ(X) = A (6a)

d2φ(X) = tr(B(dX)T CdX) ⇔ Hφ(X) =
1

2
(BT ⊗C+B⊗CT ) (6b)

d2φ(X) = tr(B(dX)CdX) ⇔ Hφ(X) =
1

2
Krn(BT ⊗ C + CT ⊗ B)

(6c)
where d denotes the differential, and A, B, and C are matrices, each
of which may be a function of X. The gradient of φ with respect to
X and the Hessian matrix of φ at X are defined as

∇φ(X) =
∂φ(X)

∂X

Hφ(X) =
∂

(vecX)T

(
∂φ(X)

∂(vecX)T

)T

(6d)

where vec is the vector operator and stands for the operation of stack-
ing the columns of a matrix into one column, and ⊗ denotes the Kro-
necker product. The matrix Kpn denotes the pn × pn commutation

matrix; KT
pn = K−1

pn = Knp and Krm(A ⊗ C) = (C ⊗ A)Kqn, where

A ∈ IRm×n and C ∈ IRr×q.

Corollary 4. Let let F : IRn×p → IR be as in Theorem 4. Then the
gradient and the Hessian matrix of F are given by

∇F = Ez(zT Ez)−1 + ET z(zT ET z)−1, (7a)

HF = (zT ET z)−1 ⊗ E + (zT Ez)−1 ⊗ ET

− (zT ET z)−1 ⊗ Ez(zT Ez)−1zT E

− (zT Ez)−1 ⊗ ET z(zT ET z)−1zT ET

− KEz(zT Ez)−1 ⊗ (zT ET z)−1zT ET

− KET z(zT ET z)−1 ⊗ (zT Ez)−1zT E.

(7b)

for some permutation matrix K.

This result can be generalized for computing the first and second
order differentials of F (z) = tr{log(zT Ez + D)} as shown in the
following result.

Corollary 5. Let E ∈ IRn×n, and D ∈ IRp×p such that DT = D.
Let F : IRn×p → IR be defined by F (z) = tr{log(zT Ez + D)}, then
the first and second order differentials of F are

dF = tr{(zT Ez + D)−1(dzT Ez + zT Edz)}, (8a)

and

d2F = 2tr{(zT Ez + D)−1dzT Edz}
− tr{(zT ET z + D)−1zT ET dz(zT ET z + D)−1zT ET

− 2tr{(zT Ez + D)−1dzT Ez(zT Ez + D)−1zT Edz

− tr{(zT Ez + D)−1zT Edz(zT Ez + D)−1zT E.

(8b)

Therefore, the gradient and the Hessian matrix of F are

∇F = Ez(zT Ez + D)−1 + ET z(zT ET z + D)−1, (9a)

HF = (zT ET z + D)−1 ⊗ E + (zT Ez + D)−1 ⊗ ET

− (zT ET z + D)−1 ⊗ Ez(zT Ez + D)−1zT E

− (zT Ez + D)−1 ⊗ ET z(zT ET z + D)−1zT ET

− KEz(zT Ez + D)−1 ⊗ (zT ET z + D)−1zT ET

− KET z(zT ET z + D)−1 ⊗ (zT Ez + D)−1zT E,

(9b)

for some permutation matrix K.

Proof: The proof is a direct application of the definitions (5a), (5b),
and Lemma 5.

3 A Logarithmic Cost Function

In this section, a logarithmic cost function is introduced. Based on
the gradient of this function, dynamical systems for principal singular
component analysis for a general rectangular matrix are derived. The
cost function that will be considered is defined as

G(x, y) = tr{log(xT Ay + D)} − α

2
tr{(xT x + yT y)}, (10)
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where A ∈ IRn×m, D ∈ IRp×p, x ∈ IRn×p, y ∈ IRm×p, and α > 0 is
sufficiently large number.

Remark: The natural logarithm of a square matrix C, denoted by
log(C), is defined if and only if C is invertible. This means that
log(C) is defined as long as the spectrum of C does not contain the
origin.

The cost function G can be shown to be upper bounded and −G
is radially unbounded. Thus gradient systems that converge to the
principal singular components (PSC) of the given matrix A can be
derived. To gain some insight of the above cost function defined in
(10), we consider the scalar case as in the following example.

Example: Let F (x, y) = log(axy +d)− 1
2
x2− 1

2
y2, where a > 0 and

d > 0. The objective is to find the minima and maxima of F over
IR2. The gradient and the Hessian matrix of F can be verified to be

∇F =

[
ay

axy+d
− x

ax
axy+d

− y

]
, (11a)

and

∇2F =

[ −(ay)2

(axy+d)2
− 1 ad

(axy+d)2

ad
(axy+d)2

−(ax)2

(axy+d)2
− 1

]
. (11b)

The equilibrium points of F are solutions of the equations

ay = x(axy + d),

ax = y(axy + d).
(12a)

Clearly, (x, y) = (0, 0) is one of the solutions for ∇F = 0. If x �= 0,
then y �= 0 and y

x
= x

y
. Thus x2 = y2, or equivalently y = ±x. Now

if y = x, then a = ax2 + d or x2 = 1− d
a
. The last equation has real

solutions only if d
a
≤ 1, in which case x = ±

√
1 − d

a
. This yields the

following solutions: {(x, y) = ±(
√

1 − d
a
,
√

1 − d
a
)}. Similarly if

y = −x, we obtain the following solutions: x = ±
√

1 + d
a
. This

yields the following solutions: {(x, y) = (±
√

1 + d
a
,∓

√
1 + d

a
)}.

Hence there are at least five solutions.
At non-zero equilibrium points we have a) y2 = x2 = 1− d

a
, or b)

y2 = x2 = 1 + d
a
. For the first case (a), ∇2F simplifies to

∇2F =

[
−x2 − 1 d2

a2

d2

a2 −y2 − 1

]

=

[−2 + d
a

d
a

d
a

−2 + d
a

]
.

(12b)

Thus ∇2F is negative definite provided that d
a

≤ 2 and

det(∇2F ) = 4(1 − d
a
) > 0. Consequently, ∇2F is negative definite if

and only if d
a

< 1.

For Case (b), similar analysis shows that

∇2F =

[−2 − d
a

d
a

d
a

−2 − d
a

]
which is negative definite if and only

if d
a

> −1. This condition is always satisfied if a is positive and d is
non-negative.

3.1 A Gradient Dynamical System

Let z =

[
x
y

]
, and E =

[
0 A
0 0

]
, then zT Ez = xT Ay, zT ET z =

yT AT x, and therefore, the cost function G(x, y) defined in (11) may
be expressed as G(x, y) = G(z) = tr{log(zT Ez +D)− α

2
zT z}. From

Corollary 7, it follows that the gradient and the Hessian matrix HG
can be expressed in terms of the matrices A, D, x, y as follows:

∇G =

[
Ay(xT Ay + D)−1 − αx

AT x(yT AT x + D)−1 − αy

]
. (13a)

Thus gradient dynamical systems for maximizing G may be expressed
by

x′ = Ay(xT Ay + D)−1 − αx,

y′ = AT x(yT AT x + D)−1 − αy.
(13b)

To analyze stability of equilibrium points of this system, an expres-
sion for the Hessian matrix HG can be verified to be:

HG = (yT AT x + D)−1 ⊗
[

0 A
0 0

]
+ (xT Ay + D)−1

⊗
[

0 0
AT 0

]
− (xT Ay + D)−1 ⊗

[
0 0

AT 0

] [
x
y

]
× (yT AT x + D)−1 [xT yT ]

[
0 0

AT 0

]
− (yT AT x + D)−1 ⊗

[
0 A
0 0

] [
x
y

]
(xT Ay + D)−1

× [xT yT ]

[
0 A
0 0

]
− K

[
0 A
0 0

] [
x
y

]
(xT Ay + D)−1 ⊗ (yT AT x + D)−1

× [xT yT ]

[
0 0

AT 0

]
− K

[
0 0

AT 0

] [
x
y

]
(yT AT x + D)−1 ⊗ (xT Ay + D)−1

× [xT yT ]

[
0 A
0 0

]
,

(14)

= (yT AT x + D)−1 ⊗
[

0 A
0 0

]
+ (xT Ay + D)−1 ⊗

[
0 0

AT 0

]
− (xT Ay + D)−1 ⊗

[
0 0

AT x(yT AT x + D)−1yT AT 0

]
− (yT AT x + D)−1 ⊗

[
0 Ay(xT Ay + D)−1xT A
0 0

]
− K

[
Ay
0

]
(xT Ay + D)−1 ⊗ (yT AT x + D)−1 [ yT AT 0 ]

− K

[
0

AT x

]
(yT AT x + D)−1 ⊗ (xT Ay + D)−1 [ 0 xT A ] .

(15)

for some permutation matrix K.
In the next section, the dynamical system (13b) will be analyzed

in terms of stability, convergence, and the limiting behavior as t →
∞.

4 Convergence Analysis

The stability of the system (13b) can be established as in the follow-
ing theorem:

Theorem 6. Consider the dynamical system (14b) with α = 1, and
assume that x(t) and y(t) are solutions for the system for t ≥ 0.
Assume also that x(0) = x0 ∈ IRn×p, y(0) = y0 ∈ IRm×p are full
rank. Let P = limt→∞ x(t)T x(t), Q = limt→∞ y(t)T y(t), and B =
limt→∞ x(t)T Ax(t). Then each equilibrium point of (13b) is of the
form

x = u
√

I − DΣ−1,

y = v
√

I − DΣ−1,
(16)

where u and v are as defined in (2). Moreover, P , Q, and B are
diagonal and P = Q. The principal singular values of A are the
diagonal elements of the matrix P−1B.

Proof: The proof of this result follows from solving ∇G = 0 and
applications of Propositions 7, 8, and 9 see Appendix). The details
are omitted due to space limitations.

5 Numerical Example
In this example, we examine the convergence of the dynamical sys-
tem (13b). A matrix A is chosen randomly using the matlab func-
tion rand. Euler method is used to approximate the solution with a

1935



learning parameter α = 0.62. This number is chosen randomly. The
matrices A, D are as given below. The algorithm is iterated N=7700
times and convergence is measured by the off-diagonal elements of
xT Ay, xT x, and yT y. The initial matrices x0, y0 are chosen to be
full rank using the Matlab function rand. As can be seen from the
matrices below, in the limit, xT x, yT y, and xT Ay are all diagonal
(as in Matlab syntax x′ denotes xT ). It should be noted that the
diagonal elements of D and x̂T Aŷ have the same ordering.

A=
40.4305 12.0298 13.9160 12.9982 3.8420 13.9184
12.1381 39.3421 14.5428 6.2107 18.0638 11.1726
12.3564 14.5607 24.1947 15.2457 10.5267 5.8570
14.9267 5.6902 12.6775 35.2897 8.8043 10.4545
6.9882 19.9212 14.1417 10.8331 27.8930 8.9412
16.1348 13.0127 6.4962 14.3504 11.5070 47.2777

x = 0.4297 -0.6360 -0.3960 -0.3002
0.4375 -0.2463 0.2243 0.5647
0.3428 0.1050 -0.2929 0.1940
0.3683 0.5533 -0.4639 -0.2240
0.3634 0.2527 0.1013 0.4187
0.4822 0.1026 0.6357 -0.5272

y = 0.4476 -0.6006 -0.3892 -0.3104
0.4502 -0.2404 0.2251 0.5687
0.3517 0.0520 -0.2920 0.2204
0.3916 0.5934 -0.4346 -0.2200
0.3361 0.2793 0.1664 0.3871
0.4480 0.0727 0.6469 -0.5325

x’Ay=94.8730 0.0000 0.0000 0.0000
-0.0000 22.4310 -0.0000 0.0000
-0.0000 -0.0000 30.5027 0.0050
0.0000 -0.0000 0.0050 36.1468

x’x=0.9937 0.0000 0 -0.0000
0.0000 0.8567 -0.0000 0.0000

0 -0.0000 0.9225 0.0000
-0.0000 0.0000 0.0000 0.9501

y’y=0.9937 0.0000 0 -0.0000
0.0000 0.8567 -0.0000 -0.0000

0 -0.0000 0.9225 0.0000
-0.0000 -0.0000 0.0000 0.9501

D= 0.5983 0 0 0
0 3.7533 0 0
0 0 2.5613 0
0 0 0 1.8994

6 Conclusion
In this paper, unconstrained optimization methods are utilized to
derive a dynamical system that converges to the principal singular
components of a given matrix. Numerical experiments have shown
that the proposed system is fast and the learning parameter is nearly
independent of the matrix used. It is also noticed that the system
converges to the actual singular triplets starting from any full rank
initial conditions. The case where the initial conditions are not full
rank remains to be explored. The work presented here requires ad-
ditional analysis and generalization to complex data and matrices.

7 Appendix
In this appendix, we list a number of results that are used in proving
some of the propositions of this work.

Proposition 7. Let D, A ∈ IRn×n be positive definite matrices and
assume that D is diagonal having distinct eigenvalues. If AD = DA,
then A is diagonal.

Proof: Assume that A = [aij ] and D = diag(μ1, · · · , μn), then for
each i, j we have aijμj = μiaij or (μj − μi)aij = 0. Thus aij = 0
for i �= j, i.e., A is diagonal.

Proposition 8 [17]. Let B, D ∈ IRp×p and assume that D is diag-
onal and all eigenvalues of D are distinct. If BD + DB is diagonal,
then B is diagonal.

Proposition 9. Let A, B, C ∈ IRn×n, then the matrices
ABC, BCA, CAB are similar and thus have the same set of eigen-
values.
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