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Abstract — In this paper, a novel solution is developed to solve the 
problem of separating noisy and post-nonlinearly distorted 
mixture. In the proposed work, the source signals are 
nonstationary and temporally correlated. A generative model 
based on Hidden Markov Model (HMM) is derived to track the 
nonstationarity of the source signal while the source signal itself is 
modeled by temporally correlated Generalized Gaussian 
Distribution (GGD) Model. The Maximum Likelihood (ML) 
approach is developed to estimate the parameters of the proposed 
model by using the Expectation Maximization (EM) algorithm 
and the source signals are estimated by Maximum a Posteriori 
(MAP) approach. The strength of the proposed approach lies 
in the tracking of the nonstationarity of the source signal by 
HMM and the temporal correlation by the autoregressive 
(AR) source model. This has resulted in high performance 
accuracy, fast convergence and efficient implementation of 
the estimation algorithm. Simulations have been 
investigated to verify the effectiveness of the proposed 
algorithm and the results have shown significant 
improvement has been obtained when compared with 
nonlinear algorithm without using HMM.

Keywords—Hidden Markov Model, Nonlinear signal processing, 
Blind source separation (BSS).

I. INTRODUCTION 

The need of accurate representation and separation of the 
nonlinear distorted signals has resulted in the emergence of 
nonlinear BSS. The self-organizing map (SOM) has been used 
in [1] but it suffers from both network complexity and 
interpolation errors for continuous phase signals. Neural 
network models [2-6] based on nonlinear ICA algorithms are 
more structured and reported to produce better results than 
SOM models. The post-nonlinear model proposed by Taleb [5] 
is suitable for the practical applications which involve the use of 
nonlinear sensors. For the separability of the post-nonlinear 
model, [5, 6] have provided the analysis. Similar approaches 
were later adopted in [7, 8] where the hidden neuron functions 
are spanned by polynomials. Recently, a new result is 
developed in [9] in which the nonlinearity is characterized by a 
class of strictly monotonic continuously differentiable functions 
for BSS of nonlinear mixtures. However, many practical 
applications have been found to involve highly nonstationary 
and temporally correlated signal, such as speech signals and 
biomedical signals. Hence, a post-nonlinear BSS model of 
nonstationary and temporally correlated source signals must be 
proposed for most practical applications. Harmeling et al [10] 
proposed a kernel-based algorithm for nonlinear mixture of 

temporally correlated source. However, the nonstationarity of 
the source signal is not used and the mixing environment in the 
algorithm is assumed to be noiseless. 

In this paper, a noisy post-nonlinear mixing of nonstationary 
and temporally correlated source is considered where the 
observed output tx  at time t can be expressed by the following 

( )t t t= +x f Ms n    (1) 
The matrix M  is the mixing matrix, ts  is the vector of the 
source signals at time t and (.)f  is a layer of continuously 
differentiable nonlinear function. The additive noise tn  is 
assumed to be Gaussian with zero mean and diagonal 
covariance matrix ( )1 β I . The objective is to provide optimal 
estimation of the source signals, the mixing process parameters 
and the parameters of the additive noise. 

The contribution of this paper is to provide a novel solution 
to noisy post-nonlinear distorted mixture of nonstationary and 
temporally correlated sources. The nonstationarity of the source 
signal is tracked by HMM in the proposed generative model 
while the source signal itself is modeled by temporally 
correlated GGD model. The ML approach is developed to 
estimate the parameters in the proposed model where the post-
nonlinearity is approximated by a set of polynomials whose 
coefficients are updated as part of the mixing process 
parameters and the source signal is estimated by MAP 
approach. It is shown in Section IV that by exploiting the 
nonstationarity (in addition of the temporal correlation) of the 
source signals, significant improvement in source separation 
performance has been gained. 

II. PROPOSED MODEL 
In the proposed model, the distribution of source i is modeled 

by temporally correlated GGD model as following 

{ }, , ,(  ) exp( )
2 (1 )

Rii i
i t s i i t i ti

i

R
p s s s

R
β β= − −

Γ
  (2) 

where (.)Γ  is the standard gamma function, iβ  is the 
generalized variance and iR  controls the shape of the 
distribution. The temporal correlation of the source signal is 
represented by AR process, expressed as 

, , , , , ,
1

L

i t i t l i t l i t i t
l

s a s −
=

= = a s    (3) 

where , , ,1 , ,2 , ,[ ]i t i t i t i t La a a=a , T
, , 1 , 2 ,[ ]i t i t i t i t Ls s s− − −=s  and 

,{ , , }s i i i tR β= a  denotes all the parameters in the GGD model. 
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The GGD model parameter { },i iR β  of each source at every 
time t is assumed to switch between sK  different sets to model 
the nonstationarity of the source signal. Hence, a HMM can be 
used in the proposed model. The HMM has K  hidden states, 
which is given by Ns

sK K=  where sN  is the number of 
sources. In the HMM, the initial state probability vector is 
defined as 1 2[ ]Kπ π π=  and the state transition matrix is 
defined as A . The parameters of the mixing process and the 
source model is concatenated into the parameter set 

{ , (.), , }o s β= f M . Hence, the parameters of the proposed 
generative model, as a whole, are concatenated into the 
parameter set { , , }o= A . In Section III, the proposed model 
is trained by the ML approach while the source signals are 
estimated by the MAP approach. 

III. LEARNING RULES 

In this section, the ML approach is derived to update the 
parameters in the proposed model by EM algorithm and the 
MAP approach is also derived to estimate the source signal. 
The proposed algorithm iterates between model update and 
source estimation until convergence. 

(a) Model update by ML approach 
The joint likelihood of the observation sequence 

T T T T
1: 1 2[ ]T T=x x x x  and hidden state sequence 

T
1: 1 2[ ]T Tq q q=q  to be written as 

1: 1: 1 1
2 1

( , ) ( ) ( | ) ( | )
T T

T T t t t t
t t

p p q p q q p q−
= =

= ∏ ∏q x x   (4) 

and the joint log likelihood can be then written as

1: 1: 1 1
2 1

log  ( , ) log  ( ) log  ( | ) log  ( | )
T T

T T t t t t
t t

p p q p q q p q−
= =

= + +q x x  (5) 

Following Baye’s rule and Jensen’s inequality, the joint log 
likelihood can be maximized by using the EM algorithm to 
maximize the auxiliary function ˆ( , )F  [11], which is the 
expectation of the joint log likelihood where the expectation is 
taken relative to the conditional distribution of hidden state 

ˆ 1: 1:( | )T Tp q x  with the parameters estimated in the previous 
iteration. Hence, the auxiliary function is written as 

ˆ ˆ ˆˆ( , ) ( , ) ( , ) ( , )o oF F F F= + +A A    (6) 

ˆ 1: 1: 1
1:

ˆ( , ) ( | ) log  ( )T T
T

F p p q=
q

q x     

ˆ 1: 1: 1
21:

ˆ( , ) ( | ) log  ( | )
T

T T t t
tT

F p p q q −
=

=
q

A A q x    

ˆ 1: 1:
11:

ˆ( , ) ( | ) log  ( | )
T

o o T T t t
tT

F p p q
=

=
q

q x x   (7) 

where 1:TΣq  denotes a sum over all possible hidden state 
sequences. The three terms can be maximized separately giving 
rise to parameter update equations for each part of the proposed 
model. The term of ˆ( , )o oF can be re-arranged as 

1 1

ˆ( , ) ( ) log  ( | )
K T

o o k t t
k t

F t p qγ
= =

= x   (8) 

where 1:( ) ( | , )k t Tt p q kγ = = x  is the probability of being in state 
k at time t given observation 1:Tx . Given and defining 

   1: 1:( ) ( , | )                 ,      ( ) ( , | )   k t t k t T tt p q k t p q kα η += = = =x x   

, 1 1:( ) ( , | , )    ,       ( ) ( | )   i j t t T k t tt p q i q j b t p q kξ += = = = =x x           (9) 
( )k tγ  can be calculated by the forward-backward algorithm 

[11] as follows 
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K
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t t t t t b t Gγ α η α η′ ′
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where ( ; )t k kG −x  denotes a multidimensional Gaussian 
distribution of tx  with mean k  and covariance matrix k , 
which can be obtained as 

T

1 1 1 1
( ) ( ) ,  ( )[ ][ ] ( )  

T T T T

k k t k k k t k t k k
t t t t

t t t tγ γ γ γ
= = = =

= = − −x x x (11) 

Maximizing ˆ( , )F  and ˆ( , )F A A  leads to the usual update 
equations for kπ  and the entries ija  of A  [11], obtained as 

1 1
,

1 1
(1)            ,              ( ) ( )    

T T

k k ij i j i
t t

a t tπ γ ξ γ
− −

= =
= =  (12) 

In this paper, ( | )t tp qx  in (8) is expressed as 

(  ) (  , ) (  ) ( | , ) (  )t t t t s t t o t sp p p d p p d= =x x s s s x s s s   (13) 
By using Laplace approximation, (  )tp x  can be expressed as 

2

1 2
(2 ) ˆ ˆ(  ) (  , ) (  )
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t t t o t s

t
p p pπ≈x x s s

H
  (14) 

where ˆts  is the estimated source signal by MAP approach and  

( ) ,
1
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Hence, ˆ( , )o oF  in (13) can be expressed as 
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where we have divided ˆ( , )o oF  by the signal length T and 
2

1, , ,   ,   ( )t t N t i t i i iodiag Q Q Q f x f f′ ′′= = − −Q (17) 
The update equation for every parameter of  can now be 
obtained by using their partial derivative respectively as 

1
ˆ( , )o o

n n n
Fλ+ =

∂= +
∂ M MM M
M
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where λ  is the learning rate which can be made adaptive and 
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Following the Weierstrass Theorem [9, 10, 12], a set of 
polynomials is used to estimate the nonlinear functions f. Thus, 
every scalar function if  of f can be approximated as 

(1)1
, , , ,,

0 1,

ˆ( )    ,    
Z Z

z z
i i z i t i i t i i z i i ti t

z zvi t
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where im  is the ith row of M , 
T(1) 1

, , ,0 1 2 Z
i t i t i tv Zv −=v , 

T
, , ,1 Z

i t i t i tv v=v , 
T(2) 2

, ,0 0 2 ( 1) Z
i t i tZ Z v −= −v , ,0 ,i i i Zb b=b . 

The polynomial coefficients ,i zb  can be updated as one of the 

model parameters by maximizing ˆ( , )o oF . Define 
T T T

1 1, , 1, , ,  , N t t N t t t N to o odiag diag x x= = =B b b v v v X

(1) (1) (2) (2)(1) (2)
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Hence, the update equation for B can be obtained as 
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Thus, all the parameters in the proposed model are updated. 

(b) Source estimation by MAP approach 
With the updated model parameters, the source signal can now 

be estimated by MAP approach, which can be expressed as 
( )ˆ  argmax  log ( ) argmax  log ( ) ( )t t t t t t

t t
p p p= =

s s
s s x x s s  (23) 

where ( )t tp x s  is expressed by (  )tp x  in (13). Hence, the source 
signal can be estimated by gradient ascent algorithm 
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Hence, the proposed algorithm alternates between model update 
(a) and source estimation (b) until it converges. 

IV. RESULTS 
In this section, two experimental simulations under different 

conditions have been designed to investigate the efficacy of the 
proposed approach under different environment. 

(a) Performance under nonstationary Gaussian sources 
In this simulation, each source is generated with two different 

types of segments, one with small variance and the other one 
with large variance. The source signal is stationary Gaussian 
within every segment but nonstationary between different 
segments. For simplicity, the temporal correlation of source 
signal is modeled by an AR process with order 3, while the 
HMM used in the proposed model has 2 hidden states. The 
mixing matrix is randomly selected and the additive Gaussian 
noise is added to the mixture to obtain the required SNR. The 
function 1 1 1( ) tanh( )f v v=  and 3

2 2 2 2( )f v v v= +  are selected as the 
post-nonlinear distortions. The function 1 1( )f ν  is bounded while 

2 2( )f ν  unbounded and this selection is taken merely to 
investigate the performance of the proposed algorithm under two 
different forms of nonlinearity. The performance of the proposed 
algorithm without using HMM has also been plotted to show the 
improvement delivered by using HMM in the proposed model. 
The proposed algorithm converges fast after 10 iterations and it 
is clear from the obtained results that the proposed algorithm 
with HMM has out-performed and provides significantly better 
recovered signals. This because by adopting HMM in the 
proposed source model, for every time t iβ  and iR  can switch 
between K different sets to model different variance of different 
source segments. The obtained results show the importance of 
adopting the source non-stationarity in the proposed model when 
the source signal is highly non-stationary and post-nonlinearly 
distorted. In Fig. 1(d), Mean Square Error (MSE) between the 
recovered and original source signals versus SNR is shown. The 
average MSE improvement by using HMM for SNR ranging 
from 5dB to 30dB is about 150%. The proposed algorithm 
without HMM performs much less than satisfactory since the 
source non-stationarity is not adopted and iβ  and iR  are 
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constrained to be constant for all segments. Hence, the source 
model can not model different variances of different source 
segments but only approximate the average for all segments. 

(b) Performance under speech signals 
In this simulation, the proposed algorithm is tested for two 

speech signals with length about 4 seconds. The mixing 
environment is set up as same as in simulation (a). A 12th order  
AR process is used in source GGD model and a HMM with 4 
hidden states is used in the proposed model. Fig. 2 displays the 
original source, recovered source by proposed algorithm with 
HMM and without HMM at SNR=25dB from (a) to (c), 
respectively. It is clear that the proposed algorithm provides 
better recovered source with HMM in the proposed model. 
Hence, the obtained results again show the importance of using 
HMM to track the nonstationarity of the source signals when the 
source signal is highly nonstationary. 

V. CONCLUSIONS 
A novel statistical approach of nonlinear blind source 

separation of nonstationary and temporally correlated sources 
has been proposed. The derivation of the proposed model tracks 
the nonstationarity of source signal by using HMM and the 
temporal correlation of source signal by using temporally 
correlated GGD model as source model. The ML approach is 
developed to update the model parameters by EM algorithm 
and the source signal is estimated by MAP approach. Results 
have shown high performance accuracy and fast convergence of 
the proposed algorithm. Significant improvement has been 
obtained in comparison with nonlinear algorithm that does not 
track the source signal nonstationarity. 
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     Fig. 1 (c)

      Fig. 1 (b)     Fig. 1 (a)

Fig. 1: Signals in simulation 1 at SNR=25dB. (a) Original 
sources. (b) Recovered sources with HMM. (c) Recovered 
sources without HMM. (d) MSE versus SNR. 

     Fig. 1 (d)

     Fig. 2 (c)

       Fig. 2 (b)

  Fig. 2 (a)

Fig. 2: Signals in speech separation at SNR=25dB (a) Original 
sources. (b) Recovered sources with HMM. (c) Recovered 
sources without HMM.  
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