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ABSTRACT
We study the convergence behavior of Independent Compo-

nent Analysis (ICA) algorithms that are based on the contrast

function maximization and that employ symmetric orthogo-

nalization method to guarantee the orthogonality property of

the search matrix. In particular, the characterization of the

critical points of the corresponding optimization problem and

the stationary points of the conventional gradient ascent and

fixed point algorithms are obtained. As an interesting and a

useful feature of the symmetrical orthogonalization method,

we show that the use of symmetric orthogonalization enables

the monotonic convergence for the fixed point ICA algorithms

that are based on the convex contrast functions.

Index Terms— Independent Component Analysis, Blind

Source Separation, Symmetric Orthogonalization, Fixed Point

Algorithms, Convergence

1. INTRODUCTION

In the area of Independent Component Analysis (ICA) , and

Blind Source Separation (BSS), the contrast function max-

imization based algorithms have attracted special attention.

The fast fixed point (FastICA) algorithm introduced in [1] has

played an important role in the growth of such interest.

The convergence behavior of these algorithms is of both

theoretical and practical concern. Recently, Regalia & Kofidis

[2] shown the monotonic convergence property of the fixed

point ICA algorithms for extracting a single source from a

mixture. In addition to the deflationary case, where sources

(components) are sequentially obtained, the convergence be-

havior in the case of simultaneous extraction through a algo-

rithm using symmetrical orthogonalization is of special inter-

est. Oja [3] has shown that a particular set of matrices, where

nonzero entries at each column has a constant magnitude, are

the fixed points of the FastICA algorithm for the Kurtosis cost

function, and among these fixed points, only the matrices cor-

responding to perfect separation condition are stable.

In this article, our goal is to generalize the characterization

of fixed points in [3] for more general contrast functions and
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for both gradient ascent and fixed point algorithms using sym-

metric orthogonalization. Furthermore, as an important re-

sult, we provide the extension of the work in [2] and show that

symmetric orthogonalization enables monotonic convergence

to a fixed point in the simultaneous extraction of sources.

2. ICA (BSS) SETUP

We consider the following ICA setup: the p independent com-

ponents (sources) s1, . . . , sp, which are assumed to have unity

variance and zero mean, are mixed through a linear memory-

less mapping
⎡
⎢⎣

y1(k)
...

yq(k)

⎤
⎥⎦

︸ ︷︷ ︸
y(k)

= H

⎡
⎢⎣

s1(k)
...

sp(k)

⎤
⎥⎦

︸ ︷︷ ︸
s(k)

k = 1, . . . ,Ω, (1)

where

• yk, k = 1, . . . , q are the mixtures and q is the number of

mixtures (we assume overdetermined case, i.e., q ≥ p),

• H ∈ �q×p is the full rank (tall or square) mixing ma-

trix,

• Ω is the number of available samples.

We assume that the mixture sequence y(k) is prewhitened

through the matrix Wpre such that the whitened observations

x(k) = Wprey(k) = WpreH︸ ︷︷ ︸
C

s (2)

has the covariance matrix E(xxT ) = CCT = I.
The goal is to obtain an orthogonal separator matrix Θ ∈

�p×p such that the overall mapping from the sources to the

separator outputs, which is given by

G = ΘC (3)

is equal to the product of a permutation matrix and a diagonal

matrix with unity magnitude entries, i.e.,

G = PΛ (4)
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where the diagonal matrix Λ represents the sign ambiguity

and the permutation matrix P represents the permutation am-

biguity inherent in ICA problem.

The algorithms to achieve this goal can be derived from

an optimization setting of the form

optimize J (Θ)
subject to ΘΘT = I, (5)

which is typically posed as a maximization problem.

In the deflation approach [4], each row is obtained sepa-

rately where the above optimization problem is divided into a

sequence of sub-optimization problems for each row:

optimize Jk(Θk,:)
subject to ‖Θk,:‖2 = 1,

(6)

During this process, once a row of Θ is obtained, the corre-

sponding source signal is subtracted from the mixture. The

deflation approach has the advantage that the individual sub-

optimization problems have a unity-2-norm constraint which

is much easier to handle compared to the original orthogonal

matrix constraint in (5). However, a clear disadvantage of the

deflation process is the error accumulation problem, where es-

timation inaccuracies in the earlier optimization stages cause

growing errors for the later stages.

Among the alternative approaches to solve the optimiza-

tion problem in (5), a class of algorithms simultaneously train

all the rows of Θ using a two step procedure:

Θ(k+1) = f(Θ(k)) (i)
Θ(k) = MO(Θ(k+1)) (ii)

(7)

where

• the Step-(i) is the gradient update, where the two typical

choices are

– The Conventional Gradient Ascent:

f(Θ(k)) = Θ(k) + μ(k)Δ(k)

Θ(k) (8)

with Δ(k)

Θ(k) is the gradient of the cost function

with respect to Θ(k).

– Fixed Point Update:

f(Θ(k)) = Δ(k)

Θ(k) (9)

• the Step-(ii) is the mapping to the set of orthogonal ma-

trices, which is typically implemented using

– Gram-Schmidt Orthogonalization

– Projection to the closest orthogonal Matrix (ac-

cording to Frobenius norm sense): In this case, if

the singular value decomposition of Θ(k) is given

by,

Θ(k) = U(k)Σ(k)V(k)T
(10)

then the minimum distance orthogonal mapping

is given by

MO(Θ(k)) = U(k)V(k)T
. (11)

Note that, alternatively and equivalently, M can

be written as

M(Θ(k))O = (Θ(k)Θ(k)T
)−1/2Θ(k) (12)

where the matrix-square root above is the sym-

metric square root. This approach is also referred

as symmetric orthogonalization.

In the next section, we investigate some convergence re-

lated properties of ICA (BSS) algorithms employing symmet-

ric (minimum distance) orthogonalization.

3. CONVERGENCE PROPERTIES OF
SYMMETRICAL ICA ALGORITHMS

In analyzing the convergence behavior of symmetrical ICA

algorithms, we first look at the characterization of the po-

tential convergence (or stationary) points. Following that,

we’ll investigate the monotonic convergence property of the

fixed point ICA algorithm with symmetric orthogonalization.

Throughout the article, we assume that the cost function J in

(5) is differentiable with full-rank gradient over the set of or-

thogonal matrices.The case of rank deficient gradient can be

similarly approached with a more careful treatment.

3.1. Critical Points of ICA Algorithms with Symmetric
Orthogonalization

We start with statement of a fact related to the critical points

of the optimization problem in (5):

Theorem 1. Let Θ∗ be a local maximum of the problem (5).
Then there exists an S ∈ Cp×p such that

ΔΘ∗ = Θ∗S and S = ST . (13)

Proof: According to the Proposition 4.7.3 in [5], if Θ∗ is

a local maxima of (5), then the gradient ΔΘ∗ should be a

member of the polar cone of the tangent cone of the constraint

set at Θ∗, which is the vector space given by {Θ∗S | S =
ST }.

Using the linear relation in (3), we can rewrite the condi-

tion in (13), in terms of the overall mapping G as

ΔG∗ = G∗S′ and S′ = S′T , (14)
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where S′ = CT SC.

A similar characterization can be provided for the station-

ary points of the conventional gradient ascent (i.e., (8)) based

ICA algorithm with symmetric orthogonalization:

Theorem 2. An orthogonal matrix Θ∗ is the stationary point
of the ICA algorithm with update rule given in (8) using sym-
metric orthogonalization if and only if there exists an S ∈
�p×p for which the condition in (13) holds and λmin(S)μ(k) ≥
−1 ∀k.

Proof: Θ∗ is the stationary point of the algorithm if and only

if the Θ∗ is mapped back to itself after the two step update in

(7), which leads to

Θ∗ = MO(Θ∗ + μ(k)ΔΘ∗) (15)

= MO(Θ∗(I + μ(k)Θ∗T ΔΘ∗)) (16)

= Θ∗MO(I + μ(k)Θ∗T ΔΘ∗) (17)

where the last equality follows from the definition of the map-

ping MO defined by equations (10)-(11) and from the fact

that Θ∗ is an orthogonal matrix.

As a result, from (17) we obtain,

MO(I + μ(k)Θ∗T ΔΘ∗) = I, (18)

which implies that I + μ(k)Θ∗T ΔΘ∗ has a singular value

decomposition given by

I + μ(k)Θ∗T ΔΘ∗ = U∗Σ∗U∗T , (19)

where U∗ is a orthogonal matrix and Σ∗ is a nonnegative

diagonal matrix. The condition in (19) also implies that I +
μ(k)Θ∗T ΔΘ∗ is a Hermitian positive-definite matrix, which

further implies that Θ∗T ΔΘ∗ is equal to a Hermitian matrix

S for which λmin(S)μ(k) + 1 ≥ 0.

As a result, the condition for the stationary point for the

symmetric ICA algorithm using conventional gradient ascent

with appropriate step size is equivalent to the necessary con-

dition for the local maxima of the corresponding problem.

For the fixed point ICA algorithm employing symmetric

orthogonalization, the stationary point condition is more re-

strictive, as stated by the following theorem:

Theorem 3. An orthogonal matrix Θ∗ is a stationary point
of the fixed point ICA algorithm with symmetric orthogonal-
ization if and only if there exists a positive-definite S ∈ �p×p

such that the condition in (13) holds.

Proof: If Θ∗ is the stationary point then the following con-

dition must hold:

Θ∗ = MO(ΔΘ∗). (20)

Assuming that ΔΘ∗ has a singular value decomposition

ΔΘ∗ = UΔΣΔVT
Δ, (21)

then

Θ∗ = UΔVT
Δ. (22)

Therefore, we have

Θ∗T ΔΘ∗ = VΔUT
ΔUΔΣΔVT

Δ (23)

= VΔΣΔVT
Δ = S (24)

where S is a positive-definite matrix.

3.2. Special Case of Kurtosis Maximization

In order to illustrate the results of the previous section, we

concentrate on the popular Kurtosis maximization for which

the cost function in (5) can be written as

J (Θ) =
p∑

k=1

kurt(zk) (25)

where zk’s are the separator outputs and kurt(.) is the kurto-

sis of its argument. We assume that all components (sources)

have positive kurtosis values κk. The gradient of this cost

function with respect to G is given by

ΔG = 4G�3K (26)

where K = diag(κ1, κ2, . . . , κp) and G�n stands for nth

Hadamard power of G.

We can now outline some specific examples of critical

points based on (14) and (26):

Example 1: If G satisfies the perfect separation condition

in (4), then

ΔG = 4G�3K = 4PΛ3K = 4PΛKΛ2 (27)

= 4GKΛ2 (28)

Therefore, GT ΔG = 4KΛ2 is a Hermitian matrix, which

is also positive definite. Therefore not surprisingly, perfect

separation matrices are the critical points of the optimiza-

tion problem, the stationary points for the symmetrical gra-

dient ascent algorithm for any positive μ(k) and the stationary

points for the symmetrical fixed point algorithm.

Example 2: If G has columns with nonzero entries hav-

ing a constant magnitude βj (the example provided in [3]),

then

ΔG = 4G�3K = 4GB2K (29)

where B = diag(β1, β2, . . . , βp). Therefore, GT ΔG =
4B2K is a Hermitian positive-definite matrix, therefore, we

can make the same comments as in the previous case.
Example 3: As a more interesting example, consider the

case where

G =
1

7

2
66666664

−2 2 −2 2 2 −5 −2
−2 2 −2 2 2 2 5
2 −2 2 5 −2 −2 2
2 5 2 −2 −2 −2 2
−2 2 −2 2 −5 2 −2
−2 2 5 2 2 2 −2
5 2 −2 2 2 2 −2

3
77777775

(30)
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and K = I. If we look at the product GT ΔG, it is equal to

4

73

2
66666664

103 30 −30 30 30 30 −30
30 103 30 −30 −30 −30 30
−30 30 103 30 30 30 −30
30 −30 30 103 −30 −30 30
30 −30 30 −30 103 −30 30
30 −30 30 −30 −30 103 30
−30 30 −30 30 30 30 103

3
77777775

(31)

which is clearly a symmetric matrix, and therefore, G in (30)
is a critical point. Furthermore, since the smallest eigenvalue
of the matrix in (31) is equal to −44

49 , it would be a stationary

point for the conventional gradient ascent algorithm if μ(k) <
49
44 . Due to the fact that the symmetric matrix in (31) isn’t
positive definite, G in (30) is not a stationary point of the fixed
point algorithm. In fact, if we apply one iteration of fixed
point update (with symmetric orthogonalization) we obtain

2
66666664

0 0 0 0 0 −1 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 0 0 −1 0 0
0 0 1 0 0 0 0
1 0 0 0 0 0 0

3
77777775

, (32)

as new G, which is a perfect separation point.

3.3. Monotonic Convergence of Fixed Point ICA Algo-
rithms with Symmetric Orthogonalization

In order to show the monotonic convergence property of the

Fixed Point ICA Algorithm employing symmetrical orthog-

onalization, we follow a treatment similar to the one in [2].

The basic result is summarized by the following theorem:

Theorem 4. Fixed Point ICA algorithm with symmetrical or-
thogonalization corresponding to the optimization setting in
(5) where J is a convex cost function (bounded on the set of
orthogonal matrices), is monotonically convergent to one of
the stationary points defined by Theorem 3.

Proof: Given J is a differentiable convex function, for any

G(k),G(k+1) pair, we have

J (G(k+1)) ≥ J (G(k))
+Tr(ΔT

G(k)(G(k+1) − G(k))). (33)

If we now look at the optimization problem

maximize Tr(ΔT
G(k)G)

subject to GGT = I, (34)

according to Proposition 4.7.3 in [5], a local optimum G∗ of

the problem in (34) should satisfy

G∗S = ΔG(k) for some S = ST . (35)

From (35), we can write

ST S = ΔT
G(k)ΔG(k) (36)

= VΔΣΔUT
ΔUΔΣΔVT

Δ (37)

= VΔΣ2
ΔVT

Δ. (38)

From which we conclude that S is a Hermitian matrix with

S = VΔΛVT
Δ (39)

where Λ = ΣΔJ and J is a diagonal matrix with 1’s,and/or

−1s on the diagonal. Note that the cost function value at the

critical point G∗ is equal to

Tr(ΔT
G(k)G∗) = Tr(S) (40)

= Tr(VΔΣΔJVT
Δ) (41)

= Tr(ΣΔJ). (42)

Among all critical points specified by (35), the global maxi-

mum value is achieved for J = I. Note that this case corre-

sponds to

G∗ = UΔVT
Δ (43)

= MO(ΔG(k)), (44)

i.e., the global maximum point for the problem in (34) is ob-

tained by projecting the gradient ΔG(k) to the set of orthog-

onal matrices using mapping MO (symmetric orthogonaliza-

tion). Furthermore, the value of Tr(ΔT
G(k)G∗) at the global

maximum point is strictly greater than its values at other crit-

ical points obtained for the choices of J �= I. Therefore,

given G(k) is not a stationary point of the algorithm, i.e.,

G(k) �= MO(ΔG(k)), the choice

G(k+1) = MO(ΔG(k)), (45)

combined with (33), guarantees that J (G(k+1)) > J (G(k)).
This fact, together with the boundedness of J , implies the

convergence.
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