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ABSTRACT
Many source separation algorithms fail to deliver robust
performance when applied to signals recorded using high-
density microphone arrays where distance between sensor
elements is much smaller than the wavelength of the sig-
nal of interest. This can be attributed to limited dynamic
range (determined by analog-to-digital conversion) of the
sensor which is insufficient to overcome the artifacts due
to cross-channel redundancy, non-homogenous mixing and
high-dimensionality of the signal space. In this paper we
propose a novel framework that overcomes these limitations
by integrating learning algorithms directly with analog-to-
digital conversion. At the core of the proposed approach is a
novel regularized min-max optimization approach that yields
“delta-sigma” limit-cycles. An on-line adaptation modulates
the limit-cycles to enhance resolution in the signal sub-spaces
containing non-redundant information. Numerical experi-
ments simulating far-field recording conditions demonstrate
consistent improvements over a benchmark setup used for
independent component analysis (ICA).

Index Terms— Sigma-delta modulation, independent
component analysis, machine learning, microphone arrays

1. INTRODUCTION

One of several emerging areas where micro/nano-scale inte-
gration promises significant breakthroughs is in the field of
acoustic sensing. It is envisioned that next generation of intel-
ligent hearing devices will integrate hundreds of micro/nano-
scale microphones [1], separate speech from noise, track
conversations in cluttered environments and thus provide sig-
nificant improvements in speech intelligibility for individuals
with hearing impairments. Separation and localization of
acoustic sources using micro/nano scale microphone arrays,
however, poses a significant challenge due to fundamental
limitations imposed by the physics of sound propagation [1].
The smaller the distance between the recording elements,
the more difficult it is to measure localization and separation
cues. In its classical setting, ICA [2] and other source sep-
aration approaches are formulated independent of the signal

Fig. 1. Illustration of the proposed approach: (a) input sig-
nal distribution, (b) signal transformation and (c) resolution
enhancement

measurement process (analog-to-digital process) and there-
fore do not consider the detrimental effects of finite resolution
on the performance of the learning algorithm. However, in
the case of micro/nano-scale microphone arrays, the mutual
dependency of signal measurement and the learning algo-
rithms can not be ignored due to the following reasons: (a)
Far-field effects: Distance between recording elements on
the array is much smaller than the distance of the sources
to the sensor array. As a result, the mixing of signals at the
sensors is near singular; (b) Near-far effects: A stronger
source that is nearer to the sensor array can completely mask
weak background sources; and (c) High-dimensionality of
input analog signals due to high integration density of the
microphones.
Recently, a least mean square (LMS) method [3] has been

applied for resolving acute differences in analog acoustic sig-
nals. However, the approach is not scalable to larger arrays
as it requires direct measurement of higher-order gradients.
In this paper we present an analog-to-digital conversion al-
gorithm that integrates learning directly with delta-sigma
modulation. Traditionally, delta-sigma modulators have been
the architecture of choice for any audio based processing as
the topology is robust to analog imperfection and can eas-
ily resolve differences of more than 120 dB. (more than 16
bits). Our approach will be to formulate delta-sigma modu-
lation within the framework of statistical learning such that
the algorithm can optimally quantize non-redundant signal
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Fig. 2. Far-field recording on a miniature microphone array

sub-spaces. The core principle is depicted using Figure 1
which shows a typical distribution for a two-dimensional sig-
nal acquired through a high-density array. It can be seen in
Figure 1(a) that the distribution is near singular and that the
measurements x1 and x2 show high-degree of correlation.
Our approach is to first determine a quantized representa-
tion of a transformation matrix W, that will align the data
distribution along the orthogonal axes, each representing an
independent component (shown in Figure 1(b)). Based on
this alignment, the scale of the quantization operation will be
adjusted along each of the axes such that all the quantization
levels (represented by ticks) span a significant region of the
signal space (Figure 1(c)).

2. FAR-FIELD ACOUSTIC MODELING

In literature far-field acoustics have been extensively studied
within the context of array processing and plenacoustic mod-
els [4]. We concisely describe a simplistic model that have
been previously used for miniature microphone arrays. For
audio signals (100-20,000 Hz), microphone arrays with inter-
element distances less than 3.4cm (coherence length) can be
approximated by far-field, where the acoustic wavefronts can
be considered planar (see Figure 2). Also, for miniature mi-
crophone arrays the distance to the acoustic sources from the
center of the array can be assumed to be larger than inter-
element distance. We express the signal xj(pj , t) recorded
at jth microphone located at a 3-D position vector pj =
(x, y, z) as a superposition i ∈ {1, .., D} independent sources
si(t) recorded at the reference microphone (located at the
center of the array) [4]. This can be written as

xj(pj , t) =
∑

i

ci(pj)si(t− τi(pj)) (1)

where ci(pj) and τi(pj) are the attenuation and delay, relative
to the center of microphone array, for the source si(t) at the
position pj . Under far-field conditions it can be assumed that

ci(pj) ≈ 1 and τi(pj) << t. Similar other treatments , equa-
tion (1) can be approximated using Taylor’s series expansion
as

xj(pj , t) ≈
∑

i

si(t)−
∑

i

τi(pj)ṡi(t). (2)

The first right hand part of the equation (2) signifies a
common-mode signal and the second part signifies an instan-
taneous mixture of the derivative of the source signals. Fortu-
nately, for miniature arrays, the time delays can expressed as
linear terms as τi(pj) = uT

i pj/c, where ui is the unit normal
vector of the wavefront of source i. For distance of jth mi-
crophone from reference position |d|min = uT

i pj = 1mm,
c = 340m/s and signal frequency of 1000Hz, any signal
processor has to resolve signals less than −70dB relative to
the common-mode.

3. ΣΔ LEARNING ALGORITHM

In this section we describe a min-max optimization frame-
work that unifies statistical learning with ΣΔ modulation.
Given a random input vector x ∈ RM and an internal state
vector v ∈ RM , a ΣΔ learner determines a linear transfor-
mation matrix W ∈ RM × RM according to the following
optimization criterion:

max
W∈C

(min
v

C(v,W)) (3)

where
C(v,W) = Ω(v) − vT Ex{W

T x}. (4)

Ex{.} denotes an expectation operator with respect to the ran-
dom variable x. C denotes a constraint space on the trans-
formation matrix W. Ω(.) is a piece-wise linear regulariza-
tion functions that will be used for implementing quantiza-
tion operators. This is illustrated in Figure 3 which shows
examples of one-dimensional regularization functions Ω(.).
The piece-wise behavior of Ω(.) will lead to discontinuous
gradients Q = ∇Ω (shown in Figure 3) which are equiva-
lent to functions used for signal quantization. The minimiza-
tion step in equation (3) will ensure that the state vector v

is correlated with the transformed input signalWx (tracking
step) and the maximization step in (3) will adapt the parame-
tersW such that it minimizes the correlation (de-correlation
step). The formulation bears similarities with game-theoretic
approaches where tracking and de-correlation have been for-
mulated as conflicting objectives. The uniqueness of the pro-
posed approach, compared to other optimization techniques
to solve (3) is the use of bounded gradients to generate ΣΔ
limit-cycles. This is illustrated in Figure 4 which illustrates
the proposed optimization procedure using a two-dimensional
contour. Provided the input x and the norm of the linear trans-
formation ||W ||∞ are bounded and the regularization func-
tion Ω satisfies the Lipschitz condition, the optimal solution
to (3) is well defined and is given by v∗ = 0 (see Figure 4).
In the proposed approach, however, only the path to the final
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Fig. 3. One dimensional piece-wise linear regularization
functions (left) two level (right) multi-level

solution w∗ and the limit-cycles about the solution (see Fig-
ure 4) will be of importance. The path and the limit-cycles
will encode the topology of the optimization manifold which
is defined by input vector x and the transformationW.

3.1. First-order ΣΔModulation

The link between optimization (3) and delta-sigma modula-
tion is the minimization part in (3) where applying a stochas-
tic gradient descent step yields

vn = vn−1 + WT
nxn − Dn (5)

with n signifying the time steps and Dn = ∇Ω(vn−1) being
the quantized representation according to functions shown in
Figure 3. Note that the formulation (5) does not require any
learning rate parameters typically used in other neural net-
work approaches. As the recursion (5) progresses bounded
limit cycles are produced about the solution v∗ (see Fig-
ure 4). It can be shown that for ||Wn||∞ ≤ 1, ||vn||∞ ≤ 1,
which leads to En{Dn}

n→∞
−→ En{Wnxn}, where En{.}

denotes an empirical expectation with respect to time indices
n. Thus, recursion (5) produces a quantized sequence whose
mean asymptotically encodes the transformed input at infinite
resolution. It can also be shown that for a finite N iterations
of (5) yields a quantized representation that is log2(K) bits
accurate.

3.2. ΣΔ de-correlation

The maximization step (de-correlation) in equation (3) yields
updates for matrixW according to:

Wn = Wn−1 − 2−P Dnψ(xn)T ;Wn ∈ C (6)

whereψ : RM →RM function dependent on the transforma-
tionW. For instance, ψ(.) could be chosen to be a quantized
function which yields a completely digital update for (6). P
in equation (6) is an update parameter which determines the
resolution of the parameter matrixW. In this paper, we have

Fig. 4. Limit cycle behavior using bounded gradients

chosen ψ(xn) = Dn and the constraint space C has been cho-
sen to restrictW to be a lower triangular matrix with all diag-
onal elements to be unity. The choice of this constraint guar-
antees convergence of the updates (5) and (6). It can be seen
from the equation (6) that if ||W||∞ is bounded, recursion (6)
will asymptotically lead to En{DnDT

n } → 0 forW∞ ∈ C.
Thus, the proposed ΣΔ learning algorithm produces a quan-
tized sequence that are mutually orthogonal.

3.3. ΣΔ Resolution Enhancement

One of the advantages of integrating signal de-correlation and
dimensionality reduction with the analog-to-digital conver-
sion is the ability to enhance the overall resolution of the sys-
tem by “zooming” into the transformed signal space contain-
ing low energy (for example dimension x2 in Figure 1(b)).
This feature is essential for normalizing the signal power of
independent sources, especially when one of the sources is
masked by another dominant source or common-mode inter-
ference. The “zoom” mechanism can be incorporated by in-
troducing a diagonal matrix Λ ∈ RM × RM into the cost
function (4) as

C(v,W, Λ) = Ω(ΛT v)− vT Ex{W
T x}. (7)

where the optimization (3) is also performed with respect to
the parameter matrix Λ. The stochastic gradient step equiva-
lent to recursion (5) is given by

vn = vn−1 + (WT
n−1

xn − ΛT
nDn) (8)

The asymptotic behavior of update (8) for equation (7) can
be expressed as En{Dn}

n→∞
→ Λ−1En{W

T
nxn}. Thus re-

ducing the magnitude of diagonal matrix Λ will result in an
equivalent amplification of the transformed signal. The pa-
rameter Λ is determined based on the following element-wise
update

Λi = max |(Wnxn)i|; n > N0 (9)

which ensures that the updates (8) and (9) are always bounded.
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4. RESULTS FROM NUMERICAL SIMULATIONS

For our experiments we simulated a recording conditions
of a miniature array consisting of 4 omni-directional mi-
crophones. Three of the microphones were placed along a
triangle with distance being 1mm, whereas the fourth micro-
phone was placed at the centroid. The set up is similar to the
conditions that have been reported in [5] where the simulation
have been shown to closely approximate real-life anechoic
conditions. To simulate the microphones’ gain mismatch, the
experiments were performed assuming up to 5% mismatch in
the gain of the microphones.
For all experiments three independent speech signals were

chosen as far-field sources. The outputs of the microphone
array were first presented to the proposed ΣΔ learner, subse-
quent to which, only three of the outputs are used as inputs
to the FastICA algorithm [2]. A benchmark used for compar-
ative study consisted of ΣΔ converters which directly quan-
tized the mixtures recorded at the microphones. The perfor-
mance of the algorithms are quantified by signal-to-distortion
ratio (SDR), signal-to-interference ratio (SIR) and signal-to-
artifact ratio (SAR) [6] which takes into account degradation
due to noise and cross-channel leakage.
The experimental results are summarized by Table 1 and

Figure 5, where the SDR, SIR, and SAR are computed for
each of the sources (S1-S3) for different values of over-
sampling ratio (OSR) N . As the results show, the proposed
ΣΔ learner (denoted by “with”) outperforms its benchmark
(denoted by “without”).

5. CONCLUSION

In this paper, we have proposed a novel framework that in-
tegrates machine learning with analog-to-digital conversion.
One of the applications of this integration is the ability to
resolve acute differences in signals recorded using a minia-
ture microphone array where classical approach of digitiza-
tion followed by source separation fails to produce robust re-
sults. Using numerical simulations we have shown that the
framework demonstrates consistent improvements in perfor-
mance over a benchmark system when applied for indepen-
dent component analysis.
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