
EXTENSION OF EFICA ALGORITHM FOR BLIND SEPARATION OF PIECEWISE
STATIONARY NON GAUSSIAN SOURCES
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ABSTRACT
We propose an extension of EFICA algorithm for piecewise

stationary and non Gaussian signals. The proposed method is

able to profit from varying distribution of the original signals

and also from their varying variance, which is demonstrated

by simulations with real-world signals. We show that in case

of constant-variance signals, the accuracy of the method may

achieve the corresponding Cramér-Rao bound, if score func-

tions of the original signals are known in all blocks.

Index Terms— Independent Component Analysis, Piece-

wise Stationary Signals, Cramér-Rao Lower Bound, Blind

Source Separation, FastICA Algorithm

1. INTRODUCTION

The underlying model considered in Independent Component

Analysis (ICA) [1, 2] is

x = As, (1)

where s = [s1, . . . , sd]T is a vector of independent random

variables (RVs), and each of them represents one of unknown

original signals. In practice, N i.i.d. realizations of x are

available, that are mixtures of the signals s via unknown d×d
regular mixing matrix A. Using the assumption of indepen-

dence of s1, . . . , sd, the goal is to estimate the demixing trans-

form A−1 up to an indeterminable order, scales, and signs of

its rows.

Numerous methods for separation of i.i.d. signals have

been proposed [7, 8, 9]; some recent algorithms [4, 10] were

developed to achieve accuracy that approaches the respective

Cramér-Rao Lower bound (CRLB) [3]. The bound, for an

unbiased estimator Ŵ of A−1, is

CRLB[Gk�] =
1
N

κ�

κkκ� − 1
, k �= �, (2)
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where G = ŴA is the so-called gain matrix, which should

be close to the identity1, and κk = E[ψ2
k(x)], where ψk =

−f ′
k(x)/fk(x) is the score function of the probability density

function (pdf) fk(x) of the k-th RV sk. The knowledge of

the score functions or their proper estimation is a common

necessity of the algorithms to achieve the bound. Another

algorithm proposed for the non stationary and non Gaussian

scenario is NSGS by Pham [11].

2. FASTICA AND EFICA ALGORITHMS

The FastICA algorithm [8] is based on optimization of a con-

trast function

c(wk) = E[G(wT
k z)], (3)

where wT
k denotes the k-th row of the de-mixing matrix Ŵ

to-be estimated, G(·) is a nonlinear function whose derivative

will be denoted by g(·), and z is a vector derived by trans-

forming signals x so that the elements of z are not correlated

and have unit variance. The optimization of c(wk) proceeds

via iteration

w+
k ← E[zg(wk

T z)] − wkE[g′(wk
T z)], (4)

where the theoretical expectations are replaced by respective

sample means. While the one-unit FastICA completes each

iteration by normalizing the vector w+
k , the symmetric Fas-

tICA computes d iterations (4) in parallel and does a symmet-

ric orthogonalization of [w+
1 , . . . ,w+

d ]T to estimate all rows

of the demixing matrix Ŵ. The theoretical performance [3]

of the one-unit FastICA is characterized by

var[G1U
k� ] ≈ 1

N

γk

τ2
k

def.=
1
N

V 1U
k� , k �= �, (5)

where G1U is the gain matrix, each of its rows corresponds

to the estimation of one demixing vector, and γk = βk − μ2
k,

1Without loss of generality, we assume that the original signals have unit

variance.
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τk = νk − μk, μk = E[skg(sk)], νk = E[g′(sk)], and βk =
E[g2(sk)].

EFICA [4] proceeds in three steps: (1) It preestimates all

the original signals by means of the symmetric FastICA, (2)

for each k = 1, . . . , d, adaptively chooses nonlinearity g
def.=

gk for approximating the score function of the k-th signal, and

(3) does the fine-tuning (further one-unit FastICA iterations

using the nonlinearities found in step (2)), and a refinement.

Using the theoretical performance of the fine-tuning given by

(5), in the refinement, optimum weights are computed, for

each k = 1, . . . , d, according to2

ck� =
V 1U

k�

V 1U
�k + 1

, k �= �, ckk = 1, � = 1, . . . , d (6)

and used to form matrix

W+
k = [ck1w+

1 /‖w+
1 ‖, . . . , ckdw+

d /‖w+
d ‖]T . (7)

The k-th row of symmetric orthogonalization of W+
k yields

the final estimate of wk. The performance of EFICA is then

given by

var[GEF
k� ] ≈ 1

N

V 1U
k� (V 1U

�k + 1)
V 1U

k� + V 1U
�k + 1

, k �= �. (8)

In the case when gk = ψk, it holds that βk = νk = κk and

μk = 1. Then, V 1U
k� = 1/(κk − 1), and its substitution into

(8) gives (2) and proves the asymptotic efficiency of EFICA.

3. PIECEWISE STATIONARY ICA

The model considered in this paper, called piecewise station-

ary model, is such that the samples of signals need not be

identically distributed, specifically, the pdf fk(x) of sk may

be different at each time instant/interval [11]. To allow prac-

tical estimation of signal statistics, we will assume that there

are M blocks of the same integer length N/M where the dis-

tribution of the signals is unchanging. In that case, the model

(1) holds within each block, i.e.,

x(I) = As(I), I = 1, . . . , M. (9)

From here on, the superscript (I) denotes quantities, RVs, or

functions related to the I-th block.

Prior to the novel algorithm proposal, we suggest that a

straightforward adaptation of the FastICA-based algorithms

to the piecewise stationary model (9) may consists in redefi-

nition of the contrast (3) by

c(wk) = λ
(1)
k E[G(1)

k (wT
k z(1))]+· · ·+λ

(M)
k E[G(M)

k (wT
k z(M))]

(10)

where λ
(1)
k , . . . , λ

(M)
k are suitable weights, and G

(1)
k , . . . , G

(M)
k

are properly chosen nonlinear functions. In practice, this

means applying different nonlinearity g(·) in (4) on each

block of samples of wT
k z(I), i.e. the derivatives g

(I)
k of G

(I)
k .

2Note that the definition of the weights in [4] is different due to normal-

ization of vectors w+
k in (7), k = 1, . . . , d.

4. EXTENSION OF EFICA ALGORITHM

In this section, we propose an extension of EFICA algorithm,

called Extended EFICA, that is tailored to piecewise station-

ary signals obeying the model (9). The concept consisting

of the three following steps is similar to that of the original

EFICA described above:

EEF1 Separation by the symmetric FastICA in order to obtain

a preestimate of the demixing matrix Ŵ.

EEF2 Fine-tuning of each row of Ŵ by means of the one-unit

FastICA with the contrast function (10). Selections of

the weights and the nonlinearities are simultaneously

updated as described below.

EEF3 The refinement to get the most accurate and final esti-

mate of the whole demixing matrix.

As shown in [4], the symmetric FastICA is a well-established

way for fast and reliable pre-estimation of Ŵ. Here also, per-

formance depends on the nonlinear function g(·), which, in

theory, may not be sufficient for various non-Gaussian sig-

nals [5]. Luckily, this is not the case of most practical signals

such as speech as will be shown in simulations section.

The second and the third steps are due to the accuracy

improvement, which can be accomplished if only nonlinear

functions g
(I)
k are properly chosen. Thanks to the first step,

this can be done adaptively using the separated signals there-

from, specifically, the score functions on each block I can be

estimated as the optimum choice of the nonlinearities [3, 5].

The weights λ
(1)
k , . . . , λ

(M)
k in (10) could be either set to the

same nonzero value, which will be called the Uniform Ex-
tended EFICA, or according to the expression (13) derived

hereafter.

For the score function estimation, we use the flexible and

fast parametric estimator proposed by [10], that minimizes

mean square distance between a score function and a linear

combination of K basis functions h1(x), . . . , hK(x), i.e.,

min
θ1,...,θK

E

[(
ψ(x) −

K∑
i=1

θihi(x)
)2

]
. (11)

Since E[ψ(x)h(x)] = E[h′(x)] for any function h(x), the

minimization is fast, because it requires estimation of mo-

ments E[h2
i (x)] and E[h′

i(x)], i = 1, . . . ,K, and leads to the

solution of a set of K linear equations. Moreover, the mo-

ments are used in further computations (e.g. in (4)), which

yields computational savings.

In our implementation, we have decided for two (K = 2)

basis functions: h1(x) = x3, that is good for sub-Gaussian

sources, and h2(x) = x/(1+6|x|)2 working well with super-

Gaussian sources [5]. Such choice turns out to be appropriate

for a wide class of distributions and offers a good trade-off

between accuracy and speed. For instance, when considering
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signals with Generalized Gaussian distributions, the estima-

tor (11) with our settings yields comparable results with the

adaptation proposed in [4], which is tailored to those distribu-

tions.

Finally, the refinement step is done in the same way as in

[4], i.e. using (6) and (7), with the exception that the weights

ck� are computed using V 1Ug
k� instead of V 1U

k� due to the dif-

ferent performance of the fine-tuning method in EEF2. The

expression V 1Ug
k� is defined below in (12).

5. PERFORMANCE ANALYSIS

Here, we present theoretical performance analysis of the pro-

posed algorithm and derive selections of its parameters there-

from. The analysis assumes constant (unit) variance of the

original signals in each block. However, it should be stressed

that this is only a working assumption of the analysis, which

need not be fulfilled when doing separation in practice.

First, we need to analyze performance of the one-unit Fas-

tICA utilizing the contrast function (10), which is the build-

ing stone of the fine-tuning in step EEF2. This can be easily

done by generalizing results of the analysis in [3], however,

we leave out the proof due to lack of space and refer readers

to [12]. It is shown that the performance is given by

var[G1Ug
k� ] ≈ 1

N

1
M

∑M
I=1 λ

(I)
k

2
β

(I)
k − ( 1

M

∑M
I=1 λ

(I)
k μ

(I)
k )2

( 1
M

∑M
I=1 λ

(I)
k τ

(I)
k )2︸ ︷︷ ︸

def.
= V 1Ug

k�

,

(12)

where G1Ug is the gain matrix resulting from the algorithm,

and λ
(I)
k , . . . , λ

(I)
k are the weights introduced in (10). The

optimal choice of λs is given when minimizing (12) subject

to them. In [12] we show that the J-th optimum weight is

λ
(J)
k =

1
M

(
τ

(J)
k

β
(J)
k

+ AkBk
μ

(J)
k

β
(J)
k

)
, (13)

where Ak =
(∑M

I=1
γ
(I)
k

β
(I)
k

)−1
and Bk =

∑M
I=1

μ
(I)
k τ

(I)
k

β
(I)
k

.

Hence, the performance achieved in the second step EEF2, is

given by inserting (13) into (12).

The final performance of the proposed Extended EFICA

is given after analyzing the effect of the refinement step EEF3.

The refinement, in the original EFICA, utilizes weights given

by (6), which, in fact, are functions of the performance

achieved by the fine-tunings characterized by V 1U
k� . Thanks

to this relation, the weights that are optimal for the Extended

EFICA are simply given when inserting V 1Ug
k� (defined in

(12)) into (6) instead of V 1U
k� . The same holds for the per-

formance of the Extended EFICA, which is analogous to (8),

i.e., for GEEF being the resulting gain matrix,

var[GEEF
k� ] ≈ 1

N

V 1Ug
k� (V 1Ug

�k + 1)

V 1Ug
k� + V 1Ug

�k + 1
k �= �. (14)

5.1. Cramér-Rao Bound vs. Optimal Performance

The CRLB of the piecewise stationary model under the as-

sumption of constant-variance signals is given by

CRLB[Gk�] =
1
N

κ�

κk κ� − 1
, k �= �, (15)

where κk
def.= 1

M

∑M
I=1 κ

(I)
k . See the proof in the Appendix.

We compare the bound with the performance of Extended

EFICA in the special case that the nonlinearities selected in

the second step (EEF2) equal the corresponding score func-

tions, i.e., g
(I)
k = ψ

(I)
k , for k = 1, . . . , d, I = 1, . . . ,M .

Then, β
(I)
k = ν

(I)
k = κ

(I)
k , μ

(I)
k = 1, τ

(I)
k = γ

(I)
k = κ

(I)
k − 1,

(13) simplifies to a constant λJ = 1/M , and

V 1Ug
k� =

1
κk − 1

. (16)

Inserting this into (14) we get the right-hand side of (15).

Consequently, Extended EFICA is asymptotically efficient in

case of the constant-variance signals when score functions are

properly approximated.

The uniformity of the weights (13) for this particular case

gives rise to the Uniform Extended EFICA algorithm intro-

duced in Section 4. The weights λs need not be estimated

there, since g
(I)
k (·) are assumed to be the score functions. This

may be useful when the number of blocks M is not known and

is overestimated. A possible approach for automated choice

of M can be found, e.g., in [13].

6. SIMULATIONS

Our first experiment deals with separation of six randomly

mixed signals of length N = 103 having constant unit vari-

ance, whose two blocks of the same length are distributed

either differently or alike; see Figure 1. Theoretical perfor-

mances, marked by “theory” in the acronym, were computed

using (8) and (14), respectively, for EFICA and Extended

EFICA. Results of this simple experiment shown in Figure 1

corroborate validity of the analysis and demonstrate improved

performance of the proposed method compared to the original

EFICA.

We also compare the performance of NSNG algorithm

[11] that performs (quasi)-MLE estimation without requiring

the signal variances to be constant in time. Therefore, it may

achieve better performance than Extended EFICA in scenar-

ios where the signal variances are varying. On the other hand,

we have observed cases of instability and misconvergence of

NSNG, which spoil the average performance of the algorithm,

and, therefore, Extended EFICA outperforms it on average.

The second experiment was done with similar setup but

with 20 speech signals of length N = 5000. The signals were

randomly taken from a database of utterances3, mixed with a

random matrix, and separated.

3The data-set is available online at [14].
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Fig.1 Results of the first experiment averaged over 100 Monte-Carlo

trials.

We have compared the performance of Extended EFICA

considering M = 40 blocks with other known ICA algo-

rithms utilizing non Gaussianity of signals: the symmetric

FastICA with the nonlinearity g = tanh and the Extended

Infomax [9]. The results shown in Fig. 2 given by three dif-

ferent criteria averaged over 1000 independent trials demon-

strate superior performance of Extended EFICA, where the

average improvement against the original EFICA is 1dB in

ISR and 2.5dB in SIR.
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Fig.2 Results of separation of 20 speech signals. In the legend, aver-

age computational burdens on PC with 3GHz processor are shown.

7. CONCLUSIONS

An extension of the EFICA algorithm was proposed based

on the piecewise stationary model. It is shown that its perfor-

mance may be optimal, i.e. may achieve Cramér-Rao bound

related to the model with constant-variance signals, and it

yields significant improvement in separation of real-world

signals.

Appendix
In corrections of [3], it is shown that the Fisher informa-

tion matrix (FIM) of data obeying the model (1) is FA =
N(P + Σ), where P is a constant matrix, and Σ depends

on κ1, . . . , κd. Since the observed data are composed of N

independent observations of x, P + Σ is FIM of a single ob-

servation.

The independence of the observations holds for the piece-

wise model (9) as well, therefore, the FIM of data obeying

the model (9) is FB = N(P + 1
M

∑M
I=1 Σ(I)). Since the

structures of FA and FB are the same, inversion of FB giv-

ing the CRLB is obtained in the same way as described in the

Appendix D of [3], and (15) readily follows.
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