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ABSTRACT

In this paper we present a probabilistic method for source separa-
tion in the case where each source has a certain unknown temporal
structure. We tackle the problem of source separation by maximum
pseudo-likelihood estimation, representing the latent function which
characterizes the temporal structure of each source by a random pro-
cess with a Gaussian prior. The resulting pseudo-likelihood of the
data is Gaussian, determined by a mixing matrix as well as by the
predictive mean and covariance matrix that can be easily computed
by Gaussian process (GP) regression. Gradient-based optimization
is applied to estimate the demixing matrix through maximizing the
log-pseudo-likelihood of the data. Numerical experiments confirm
the useful behavior of our method, compared to existing source sep-
aration methods.

Index Terms— Gaussian process regression, independent com-
ponent analysis, pseudo-likelihood, source separation

1. INTRODUCTION

Source separation is a fundamental problem that has wide applica-
tions in machine learning, pattern recognition, and signal process-
ing. In the simplest form of source separation, the observation data
xt = [x1,t, . . . , xn,t]

� (xi,t represents the ith element of xt ∈ R
n)

is assumed to be generated by

xt = Ast, (1)

where A ∈ R
n×n is the nonsingular mixing matrix and st ∈ R

n

is the source vector whose elements are assumed to be statistically
independent. The task of source separation is to restore unknown
independent sources st up to scaling and permutation ambiguities,
without the knowledge of the invertible mixing matrix A, given an
ensemble of data {xt}

N
t=1. In other words, source separation aims

to estimate a demixing matrix W = A−1 such that W A = PΛ

where P is the permutation matrix and Λ is an arbitrary invertible
diagonal matrix.

Various methods for source separation have been developed (see
[1] and references therein). Two exemplary independent component
analysis (ICA) methods might be Infomax [2] and FastICA [3] where
only spatial independence is exploited, assuming that sources fol-
low non-Gaussian distributions. Infomax is indeed maximum like-
lihood source separation where sources are latent variables that are
treated as nuisance parameters [4]. In cases where individual source
is temporally correlated, it is well known that second-order statis-
tics (e.g., time-delayed correlations) is sufficient to achieve separa-
tion. SOBI [5] is a widely-used algebraic method where a set of
several time-delayed correlation matrices of whitened data is jointly
diagonalized by a unitary transform in order to estimate a demix-
ing matrix. Alternatively, a linear latent function of parametric form

(e.g., auto-regressive (AR) model) was often used as a source gener-
ative model in order to characterize the temporal structure of sources
[6, 7]. In such cases, parameters involving AR source generative
models should be also estimated in learning a mixing matrix or a
demixing matrix.

Gaussian process (GP) model has been widely used in machine
learning because of its flexible nonparametric nature and computa-
tional simplicity. See [8, 9] for a review and references therein. In
this paper we use a Gaussian process (GP) model to characterize
the temporal structure of a source, representing the postulated re-
lationship by a distribution of latent functions. The latent function
which relates the current sample of source to past samples is repre-
sented by a random process with a Gaussian prior. Integrating out
latent functions is tractable, leading to a Gaussian pseudo-likelihood
that is determined by a mixing matrix as well as by the predictive
mean and covariance matrix that can be easily computed by GP re-
gression. The demixing matrix is estimated by maximizing the log-
pseudo-likelihood of the data. Several useful aspects of our method
are summarized. The flexible nonparametric nature allows sources
to be nonlinear time series and makes the method not to be sensitive
to the model order reflecting how many past samples influence the
current sample. Furthermore, the method achieves separation even
when sources have similar power spectra, while SOBI has a diffi-
culty in such a case.

2. GP SOURCE GENERATIVE MODEL

Incorporating the temporal structure of individual source, we model
si,t by

si,t = fi (�si,t−1) + εi,t, (2)

where �si,t−1 ∈ R
p is a collection of past p samples,

�si,t−1 = [si,t−1, si,t−2, . . . , si,t−p]
�

, (3)

and εi,t is the white Gaussian noise with zero mean and unit vari-
ance, εi,t ∼ N (0, 1). The function fi(·) is referred to as the latent
function which relates the current sample si,t to past samples �si,t−1.
In the case of linear autoregressive (AR) model, the latent function
is written as

fi (�si,t−1) =

p∑
τ=1

hi,τsi,t−τ , (4)

where hi,τ are AR coefficients.
GP model represents the latent function fi(·) by a random pro-

cess with a Gaussian prior, instead of a parametric form (4). We
place a GP prior over the function fi(·), i.e.,

fi ∼ GP (0, k(�si,t,�si,τ )) , (5)
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where k (�si,t,�si,τ )) is a covariance function. We use the squared
exponential covariance function, i.e.,

k(�si,t,�si,τ ) = exp
{
−λi‖�si,t − �si,τ‖

2}
, (6)

where λi is a length-scale hyperparameter.
The source generative model (2) with a GP prior (5), is referred

to as GP source generative model, following the standard GP regres-
sion framework in which s�i,1:N = [si,1 · · · si,N ]� is a collection
of responses and Si = {�si,t−1}

N
t=1 correspond to covariates. It fol-

lows from standard GP regression that the predictive distribution of
f∗i = fi(�si,∗) given �si,∗ is described by

p
(
f
∗
i | s�i,1:N ,Si,�si,∗

)
= N

(
f̄∗i , var(f∗i )

)
, (7)

where the mean f̄∗i and variance var(f
∗
i ) are determined by

f̄∗i = [ki(�si,∗)]
�

K
−1
i s

�
i,1:N , (8)

var(f∗i ) = k(�si,∗,�si,∗) − [ki(�si,∗)]
�

K
−1
i ki(�si,∗), (9)

where I is the identity matrix with appropriate dimension, K i is a
N × N matrix whose (u, v)-element is given by

[K i]u,v = k(�si,u−1,�si,v−1) + δu,v, (10)

where δu,v is the Kronecker delta (which is 1 if u = v and otherwise
0) and ki(�si,∗) is an N -dimensional vector given by

ki(�si,∗) = [k(�si,0,�si,∗) · · · k(�si,N−1,�si,∗)]
�

. (11)

Taking the source generative model (2) with GP prior (5) into
account, the mixing model (1) can be written as

xt = Af t−1 + Aεt, (12)

where f t−1 ∈ R
n is the latent vector given by

f t−1 = [f1,t−1 · · · fn,t−1]
�

, (13)

where fi,t−1 = fi(�si,t−1) and εt ∈ R
n follows independent Gaus-

sian distribution, i.e., p(εt) = N (0, I). The induced model (12) is
one of key ingredients in our method, which will be used in the next
section.

3. GP SOURCE SEPARATION

In maximum likelihood source separation, sources are treated as la-
tent variables that are marginalized out. In our induced model (12)
with GP prior (5), we consider the pseudo-likelihood which approx-
imates the likelihood with a product of conditional distributions of
xt given its neighbors,

pseudo-likelihood =

N∏
t=1

p
(
xt|X

(\t)
)

, (14)

whereX (\t) = {x1, . . . , xt−1, xt+1, . . . , xN}.
We estimate the demixing matrixW = A−1 by pseudo-likelihood

maximization with integrating out the latent vector f t−1. To this
end, we consider a single factor of the pseudo-likelihood of the data

p(xt|X
(\t)) =

∫
p(xt|f t−1, X

(\t))p(f t−1|X
(\t))df t−1, (15)

where

p(xt|f t−1, X
(\t)) = N (Af t−1, AA

�), (16)

p(f t−1|X
(\t)) = N (μt,Σt). (17)

The predictive mean vectorμt ∈ R
n and diagonal covariance matrix

Σt ∈ R
n×n are calculated using (8) and (9), which are given by

μi,t =
[
k

(\t)
i (�si,t−1)

]� [
K

(\t)
i

]−1

[s
(\t)
i,1:N ]�, (18)

Σt = diag
(
σ

2
1,t, . . . , σ

2
n,t

)
, (19)

σ
2
i,t = k(�si,t−1,�si,t−1)

−
[
k

(\t)
i (�si,t−1)

]� [
K

(\t)
i

]−1

k
(\t)
i (�si,t−1), (20)

where k
(\t)
i (�si,t−1) and s

(\t)
i,1:N are (N − 1)-dimensional vectors

where the element t is eliminated

k
(\t)
i (�si,t−1) = [k(�si,0,�si,t−1), . . . , k(�si,t−2,�si,t−1),

k(�si,t,�si,t−1), . . . , k(�si,N−1,�si,t−1)]
�

,

s
(\t)
i,1:N = [si,1, . . . , si,t−1, si,t+1, . . . , si,N ],

andK
(\t)
i ∈ R

(N−1)×(N−1) is a submatrix ofK i where column t
and row t are removed.

Mean μi,t and variance σ2
i,t are efficiently computed from the

inverse of the complete covariance matrix using inversion by parti-
tioning (see Ch. 5 in [9] or [10]), leading to

μi,t = si,t −

[
K is

�
i,1:N

]
t[

K−1
i

]
t,t

, (21)

σ
2
i,t =

1[
K−1

i

]
t,t

− var(εi,t) =
1[

K−1
i

]
t,t

− 1. (22)

It follows from (15), (16), and (17) that the single factor of the
pseudo-likelihood follows Gaussian distribution,

p(xt|X
(\t)) = N (Aμt,Γt), (23)

whereΓt = A(Σt+I)A�. Thus we write the log-pseudo-likelihood
of the data as

L =
N∑

t=1

log p
(
xt|X

(\t)
)

= −
1

2

N∑
t=1

{
log 2π + log |Γt| + β

�
t (Σt + I)βt

}
, (24)

where [βt]i =
[
K−1

i s�i,1:N
]
t
and relations (21) and (22) are used

to derive the last equality.
We estimate the demixing matrix W by maximizing the log-

pseudo-likelihood (24). A gradient-based optimization is applied to
find a solution which maximize (24), where fminunc in Matlab
optimization toolbox [11] was used in our implementation. In order
to compute the gradient, we first define

Z
kl
i = K

−1
i

∂K i

∂wk,l

K
−1
i , (25)

where the derivative of the covariance matrix K i with respect to
wk,l (which is the (k, l)-element of the demixing matrixW ) is com-
puted as[

∂K i

∂wk,l

]
u,v

= −2λik(�si,u−1,�si,v−1)
[
ΔΔ

�
w
�
i,:

]
l
δi,k,
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Fig. 1. Two nonlinear time series sources (Mackey-Glass MG30 and Santa Fe competition Laser) are used to generate the mixture. The
performance evaluation of our method is shown, with respect to: (a) the square root of the length-scale hyperparameter λ (with p = 5 fixed);
(b) model order p (with λ = 50 fixed).

whereΔ � [(xu−1 − xv−1), . . . , (xu−p − xv−p)] .With this def-
inition, the gradient of (24) with respect to wk,l is determined by

∂L

∂wk,l

= −
1

2

N∑
t=1

tr
{
Γ
−1
t

∂

∂wk,l

[
W

−1(Σt + I)W −�
]

+

(
∂

∂βt

[
β
�
t (Σt + I)βt

])� ∂βt

∂wk,l

+

(
∂

∂Σt

[
β
�
t (Σt + I)βt

])� ∂Σt

∂wk,l

}
,

which is calculated as

∂L

∂wk,l

=
1

2

N∑
t=1

tr
{

2W
−1 ∂W

∂wk,l

− Γ
−1
t W

−1 ∂Σt

∂wk,l

W
−�

−2β
�
t (Σt + I)

∂βt

∂wk,l

− β
�
t

∂Σt

∂wk,l

βt

}
, (26)

where

∂βt

∂wk,l

=
[
−Z

kl
i s

�
i,1:N + K

−1
i x

�
l,1:N

]
t
δi,k, (27)

[
∂Σt

∂wk,l

]
i,i

=

[
Zkl

i

]
t,t[

K−1
i

]2
t,t

δi,k. (28)

The hyperparameters λi can be also learned bymaximum pseudo-
likelihood, since the gradient with respect to them is easily com-
puted. However, here we fix them as constant values and learn the
demixing matrix only. One of empirical results show that the perfor-
mance does not much depend on the values of hyperparameters (see
Fig. 1 (a)).

4. NUMERICAL EXPERIMENTS

We compare our GP source separation method to several existing
methods such as FastICA [3], Infomax [2, 12], SOBI [5], and dual
AR model-based method [7] (that is referred to as AR-BSS). Fas-
tICA and Infomax exploit only non-Gaussianity of sources, without
considering any their temporal structure. SOBI is a algebraic method

which jointly diagonalizes a set of time-delayed covariance matrices
to estimate the demixing matrix. The dual AR model-based method
uses linear AR models to take the temporal structure of source into
account.

We present two empirical results in cases where: (1) sources
have similar spectra; (2) sources are nonlinear time series. We eval-
uate the performance of algorithms using the performance index (PI)
(also known as Amari index [12]) defined by

PI =
1

n

n∑
i=1

{(
n∑

k=1

|gi,k|
2

maxj |gi,j |2
− 1

)

+

(
n∑

k=1

|gk,i|
2

maxj |gj,i|2
− 1

)}
, (29)

where gi,j is the (i, j)-element of the global transformation G =
W A. When perfect separation is achieved, PI=0. In practice, PI <
0.005 gives good performance and PI < 0.05 provides reasonable
performance. We conduct 20 independent runs for each algorithm
with different initial conditions and report the average value of PI.

Throughout experiments, we fix length-scale hyperparameters
as λi = 50 for i = 1, . . . , n. In principle, such hyperparameters
can be also learned through maximum pseudo-likelihood estimation.
However, pre-specified values of hyperparameters do not much in-
fluence the final performance in our case. Exemplary empirical re-
sult is shown in Fig. 1 (a), where PI is evaluated with λ = λ1 = λ2

varying over [22, 122] in the case where the observed data is a mix-
ture of two nonlinear time series includingMackey-GlassMG30 and
Santa Fe competition Laser. We also fix the model order p as p = 5.
Exemplary performance with p varying from 1 to 13 is shown in Fig.
1 (a), where the same two nonlinear time series are used as sources.

4.1. Experiment 1

We use two independent colored Gaussian sources and one music
signal whose distribution is close to Gaussian to generate the ob-
servation data. Two colored Gaussian sources are generated by AR
models of order p = 4. Certainly FastICA and Infomax do not work
in this case, since sources are Gaussian. In the case where power
spectra of two colored Gaussian sources are similar each other, the
performance of SOBI degrades, while our method and AR-BSS still
retains satisfactory performance (see Fig. 2).
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Fig. 2. The performance comparison in Experiment1. ”Out of
range” means that PI in FastICA is over 0.8 (the maximum scale in
this plot). AR-BSS and our method work successfully in achieving
the separation of Gaussian sources.

4.2. Experiment 2

In this experiment we use nonlinear time series (Mackey-GlassMG30,
Santa Fe competition laser, the first variable Chaotic data Ikeda map)
as sources. Our method shows the best performance, compared to
SOBI and AR-BSS (see Fig. 3), although the performance differ-
ence is not so big. SOBI does not assume any linear temporal mod-
eling since it exploits only time-delayed covariance structure. Linear
AR modeling seems to be fine even in the case where actual sources
are nonlinear times series. However the performance is degraded,
compared to our nonparametric source modeling.
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Fig. 3. The performance comparison in Experiment 2. FastICA and
Infomax are omitted since their PI values are over 0.4. Our method
shows the best performance, while SOBI and AR-BSS also show
reasonable performance.

5. CONCLUSIONS

We have presented a source separation method where each source
is modeled by a GP and the demixing matrix is learned by maxi-
mizing the log-pseudo-likelihood of the data. Compared to source

separation methods where a parametric modeling (e.g., AR model)
was used to capture the temporal structure of sources, our method is
more flexible in the sense that: (1) sources are allowed to be non-
linear time series; (2) source generative model is not sensitive to the
model order. We compared our method to two representative meth-
ods (SOBI and AR-BSS) which also exploited the temporal structure
of source. Compared to SOBI, our method successfully worked even
in the case where sources have similar power spectra, whereas SOBI
failed. The marginal likelihood was also considered for source sep-
aration with GP models [13].
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