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ABSTRACT

We propose a statistical learning approach for the automatic

detection of vocal regions in a polyphonic musical signal. A

support vector model, based on a large feature set, is em-

ployed to discriminate accompanied singing voice from pure

instrumental regions. We propose a temporal smoothing of

the posterior probabilities with a hidden Markov model that

helps adapting the segmentation sequence to the precision of

the manual annotation. Quantitative results on a copyright-

free public musical corpus show a classification accuracy of

82%.

Index Terms— Vocal detection, Support Vector Ma-

chines, Hidden Markov Models

1. INTRODUCTION

Most of the western popular music consists in a leading

singing voice accompanied by background music. In most

cases, the singer is only active part of time leading to an al-

ternation between purely instrumental sections and singing

voice sections. The automatic detection of the singing voice

regions is an essential step for a number of applications in-

cluding singer automatic identification [1], singing voice sep-

aration [2] or query-by-humming. Another useful commer-

cial application arises from the need of the broadcast radio

stations to locate the point where singing starts and ends in

a song, since the speaker usually fills on air the instrumental

introduction and outing.

Even though this problem shares some characteristics

with the speech/music discrimination task, it is more com-

plex for several reasons and specific approaches need to be

developed. In fact, the singing voice covers a much wider

range of intrinsic variations than speech both in term of tim-

bre and fundamental frequencies. It is also often highly cor-

related with the corresponding background music with there-

fore strong and durable overlaps on its frequency components.

Furthermore, the variety of artists and instruments com-

plicates the exhaustive characterization of both singing voice

and instrumental music.

The issue of locating singing voice regions in musical

songs has already been addressed following traditional sta-

tistical approaches applied on widely-used speech features.

For example, Gaussian Mixture Models ([1]), Neural net-

works and SVM ([2], [3]) or Hidden Markov Model [4] were

used. However, these studies are based on a limited number

of features, traditionally used in speech recognition systems

(MFCC or/and PLP) and which may not be appropriate to

capture the characteristics of the singing voice in background

music as noted by [5] and [6]. The different methods are also

difficult to compare since all published results are obtained on

different corpora with different evalution protocols.

Therefore, the purpose of this paper is firstly to propose a

novel two-step approach for locating singing voice segments

where the output of a support vector machine (e.g. the poste-

rior probabilities) are further processed to obtain smooth de-

cision functions. Secondly, to cope with the high variabilities

of the sources, our system integrates a much wider feature set

than the previous studies. Finally, in order to permit future

comparison with our results, we provide a direct link to the

public music database used and provide all annotations and

evaluation protocols.

The paper is organized as follows. An overview of the

system is provided in section 2. Then, a brief presentation

of the feature set used is given in section 2.1 while the clas-

sification scheme and the temporal smoothing are described

in section 2.2. The experimental protocol and the results are

then presented and discussed in section 3. Finally, some con-

clusions are proposed in section 4.

2. SYSTEM OVERVIEW

The architecture of the proposed system follows a traditionnal

bag-of-frames approach where a machine learning technique

(Support Vector Machine) is applied on a set of features com-

puted on successives frames of the incoming music signal.

The ouput of the classifier is then further processed in order to

obtain smooth decision function to localise musical segments

that contain singing voice. The different building blocks of

our system are described in some details below.
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2.1. Feature extraction

The audio signal is first segmented in overlapping frames of

32 ms with a 16 ms overlap. On each frame a FFT is com-

puted with a Hamming window. Most of the features chosen

were elected for their ability to discriminate speech from mu-

sic in a previous study [7].

Most of the features were computed on the short-scale

frames stated above. Those include spectral descriptors such

as centroid, width, asymmetry, slope, decreasing, flux and

similar temporal statistical moments, along with their first

and second derivates. 13-order Mel-Frequency Ceptral Coef-

ficients (with their derivates), Linear Predictive Coding Co-

efficients from a second order Auto-Regressive analysis of

the signal and the Zero Crossing Rate are also included. The

Sharpness and Spread are defined from the perceptual Loud-

ness are also part of our feature set. Finally, we have used

the monophonic F0 frequency and Aperiodicity measure ex-

tracted with the YIN library [8].

Some additional features that do not represent an instanta-

neous behaviour of the signal are computed on long-scale

frames of 1s with overlap of 0.5s. They are repeated on short-

scale frames in order to be used with the previous descriptors

in a common feature vector. Those include amplitude modu-

lation descriptors (4 features represent the maximal peak am-

plitude and frequency along with their product and the ratio

of the peak amplitude on the mean amplitude, for both fre-

quency bands of 4-8Hz and 10-40Hz, characterizing tremolo

and granularity), temporal statistical moments computed on

long-scale frames and on their estimated envelope, and the

ZCR computed on long-scale frames as well.

The raw feature vector has 116 components. We have

used the IRMFSP algorithm to sort the features according

to their ability of discriminating the two classes (Pure in-

strumental and Singing voice with instrumental background).

The IRMFSP algorithm was originally proposed for a musical

instruments classification system based on a large feature set

[9]. We then feed the Support Vector Machine with the most

discriminating features found on the training set.

2.2. Classification

After a simple silence detection process, based on heuristic

rules on the frames energy sequence, the remaining frames

are discriminated using a one-vs-one Support Vector Machine

with Radial Basis Function kernel. Only the pure instrumen-

tal (PI) and singing voice with instrumental background (VI)

regions are kept for classification. There is no pure singing

voice in our experimental set, since the challenge here lies in

the presence of a largely overlapping musical background, as

explained earlier. Spoken or rap voice regions are discarded

for this experiment.

If (xi) is the collection of support vectors and k the ker-

nel function, the decision function f for a vector x has the

following expression :

f(x) =
∑

i

yiαik(xi,x) + b,

The output of the decision function is an unbounded value that

is not a probability. A sigmoid bijection has been proposed in

[10] and is now widely used to get probabilistic outputs from

SVMs :

p(x) =
1

1 + exp(Af(x) + B)
(1)

The A and B are computed from the distribution of the SVM

output on a specific training corpus (called validation set).

The posterior probability is thus thresholded with 0.5 value

for a maximum likelihood decision.

Nevertheless, as shown on figure 1(a), the posterior proba-

bility evolution for the singing voice (the other class of course

has a symmetric profile), is very chaotic and results in a poor

classification accuracy and the detection of many undesired

segments. A first idea is to apply a simple classical smooth-

ing with a median filter of 30 frames long (i.e. about 0.5s).

The resulting measure illustrated in figure 1(b) shows better

behaviour but this process does not adapt to the proper se-

quentially of the singing voice frames : class changes occur

much more frequently in a ”mainly” singing region than in

music regions, if annotated precisely.

We thus propose the temporal smoothing of the resulting

posterior probabilities with a Hidden Markov Model with two

states (PI and SV). The observation distributions are mod-

eled by a mixture of 5 Gaussians1, fitted with the Expecta-

tion Maximization algorithm. The best path of states is then

deduced from the SVM output sequence with the Viterbi algo-

rithm, as shown in figure 1(c). The class sequence computed

with HMM post-processing still presents misclassifications at

the segment borders, but the segment sequence has a structure

adapted to the ground truth annotation.

Finally, since the manual annotation necessarily encoun-

tered a precision limit, we have discarded the pure instrumen-

tal segments shorter than 0.5s, after empirical observation of

the annotated segments duration.

3. EXPERIMENTAL RESULTS

3.1. Audio collection and evaluation protocol

We have collected a set of 93 songs with Creative Commons

license from the Jamendo free music sharing website [11],

which constitute a total of about 6 hours of music. The files

are all from different artists and represent various genres from

mainstream commercial music. Each file has been manu-

ally annotated by the same person with high precision, with

the Transcriber free software, developed for the annotation

1Increasing the number of Gaussians up to 30 did not show a clear gain

in performance.
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Fig. 1. The thin blue curve shows the posterior probability of class

SI (Voice+Instrument) based on the SVM output. Black bold crenel

shows the ground truth annotated segmentation (0 stands for PI and

1 for SI) and the dash gray crenel shows the estimated segmentation.

of speech transcription [12]. All the audio material is de-

scribed and available at http://www.enst.fr/˜ramona/icassp08/

along with the annotation files. The jamendo audio files are

coded in stereo Vorbis OGG 44.1kHz with 112KB/s bitrate.

The files are converted to mono and downsampled to 16kHz

in this experiment.

The files are divided into three non-overlapping sets, a

training set, a validation set and a testing set, composed re-

spectively of 61, 16 and 16 songs. The validation set is used

to tune the parameters after the SVM training on an unknown

audio material, in order to simulate the behaviour on the test

set, on which the final result is measured. Empirical exper-

iments have shown that the increase of the training data set

volume does not have a noticeble impact on the performances

over a certain limit. A random subset of 20000 features vec-

tors from the training set have thus been used for computa-

tional reasons. In each experiment, the sigmoid (equation 1)

is fitted on the results of the classification of the validation set

with the trained model. The HMM probability density func-

tions are also evaluated from the posterior probabilities com-

puted on the validation set. However, the rest of the HMM

model (initial state distribution π and state transition proba-

bility A) is estimated from the annotation informations of the

training set.

The classification accuracy is then calculated on all the

frames of the test set belonging to either of the two PI and SV

classes. We have also used the F-measure as a segment-based

criterion.

3.2. Results

Figure 2 shows the evolution of the classification error rate

with the feature vector dimension varying from 10 to 110.

The σ parameter of the RBF kernel has been tuned empiri-

cally by logarithmically griding the values between 2−4 and

24, and optimizes the performance for σ = 1. We also show

here the classification error rate after HMM post-processing.

The error rate decreases in both cases with the feature vector

dimension d, but remains quite unaffected over d = 40. The

classification accuracy increases from 82.2% with d = 40
to 83% with d = 110, but obviously the first case repre-

sents a good trade-off between computational load and per-

formances. In the remainder of the paper, all result are then

given with feature vectors of dimension d=40.
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Fig. 2. Frame classification error rate.

Table 1 summarizes the classification accuracy and F-

measure after various post-processings on the sequence of

posterior probabilities. We show the raw performances and

the results after HMM post-processing, along with the re-

sults after median-filtering, or following a segment-decision

scheme, inspired from [1], on the segments bounded by the

onset detection algorithm described in [13]. We also show, as

a comparison, the results computed using our own implemen-

tation of the algorithm described in [2] (designated as ”Al-

ternate”), implementing a SVM applied on a 38 components

classical speech processing feature vector (PLP, LFPC and

MFCC), with C = 28 and σ = 24. The decisions are based

on segments of about 190ms, after the averaging of the feature

vectors on a segment.

Our system reaches 71.8% without post-processing,

which is significantly above the 62.7% obtained with the al-

ternate algorithm, with a higher temporal resolution. This

demonstrates the relevance of our feature set, compared to

more straightforward descriptors. The HMM post-processing

proposed shows better performances than the other post-

processings, with a frame accuracy of 82.2% and an F-

measure of 83.2. We observe that the homogeneous segment-

based decision scheme performs much better on the Singing

voice detection. The alternate algorithm has the same bias on

the SI class, reaching 87.7% of good classification with only

35.8% on the PI class.

Table 2 shows the detailed results on each audio file of

the test set, with the HMM post-processing. It is clear first,

that our system shows greater efficiency in locating the pure

instrumental regions than singing voice. However some files

(highlighted in the table) show very poor classification of the
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Class Sing+Instr Pure Instr ALL
Criterion fr% F fr% F fr% F
Raw 74.8 72.6 68.5 70.4 71.8 71.6

Alternate 87.7 70.5 35.8 47.4 62.7 62.4

Median filter 84.6 81.6 76.4 80.5 80.7 81.1

Segment based 88.0 84.8 74.0 80.3 81.3 82.7

HMM 80.9 84.4 84.0 82.0 82.2 83.2

Table 1. Frame classification accuracy (fr%), and F-measure (F)

on the audio test set without post-processing, and with the various

post-processing schemes proposed. The Alternate line brings a com-

parison to the results of the alternate algorithm [2] on our test set.

instrumental regions, compared to the other files average. Af-

ter audition of the misclassified regions on these files, we have

noted that they all contain an instrument that has a somewhat

similar timbre than singing voice. This shows the limitations

of our modeling of the instrumental class, that does not suf-

ficiently take into account the richness and variability of the

music background. We have tried, with no success, to boost

our algorithm by training another classifier on each song of

the test set, fed with the frames with the most confident re-

sult (highest posterior probability), but the poor modeling of

a class cannot be corrected with test-based boosting. We be-

lieve that the feature set proposed here, although better than

other approaches, is still the main limit of our approach.

Class Sing+Instr Pure Instr ALL
Criterion fr% F% fr% F% fr% F%
03 - Say me Good Bye.wav 77.0 85.8 85.6 76.7 80.1 82.3
03 - School.wav 76.2 87.3 94.9 84.1 84.3 85.7
03 - Si Dieu.wav 66.1 80.7 97.4 72.6 76.4 77.3
03 - Une charogne.wav 87.1 91.7 79.4 72.3 85.3 86.8
03 - castaway.wav 94.4 87.3 55.1 73.4 79.0 82.8
04 - Believe.wav 94.4 88.5 52.3 65.2 80.0 82.3
04 - Healing Luna.wav 70.7 81.6 96.8 86.1 85.5 84.4
04 - Inside.wav 76.5 68.2 85.3 87.6 83.3 82.9
04 - You are.wav 86.6 91.9 87.7 79.0 87.0 87.0
05 - 05 LIrlandaise.wav 93.8 64.2 33.4 47.5 57.7 57.1
05 - 16 ans.wav 69.3 84.8 99.6 94.7 91.5 92.7
05 - 2003-Circons[...].wav 85.5 88.2 89.2 91.2 87.6 89.9
05 - A Poings Fermes.wav 84.5 92.2 98.7 95.7 93.7 94.6
05 - Crepuscule.wav 81.6 88.8 89.3 85.6 85.2 87.2
05 - Dance.wav 75.3 83.2 81.4 61.5 77.0 75.8
05 - Elles disent.wav 76.1 78.7 63.6 59.9 71.8 72.1

ALL 80.9 84.3 83.6 81.8 82.2 83.1

Table 2. Details results on each file of the test set

4. CONCLUSION

In this paper we have proposed a statistical learning approach

for detecting singing voice regions in monaural polyphonic

music. The use of a two state HMM on the posterior proba-

bilities calculated from the SVM output allows us to take into

account the temporal structure of the annotated segments and

thus adapt properly the estimated class sequence. Quantita-

tive experiments show a clear increase of the overall perfor-

mances and our system reaches over 82% of frame classifica-

tion accuracy. Comparison to a similar algorithm based on a

classical speech processing feature set shows the relevance of

our feature set. However, examination of the test audio files

automatic annotation reveals that on a few audio files, one of

the musical instruments is almost always mistaken for singing

voice. This problem reveals the need for a more adapted set of

features that better discriminate musical singing voice. Other

future research directions include the coupling of source sep-

aration algorithm to enhance the singing voice signal and to

tackle the more general case of stereo signals. Finally, spe-

cific efforts will be dedicated to the modeling of the back-

ground music and to its efficient adaptation to the test data.
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