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ABSTRACT

The recent years have witnessed a surge of interest in Graph-
Based Semi-Supervised Learning (GBSSL). However, despite
its extensive research, there has been little work on graph con-
struction, which is at the heart of GBSSL. In this study, we
propose a novel active learning method, Active Model Selec-
tion (AMS), which aims at learning both data labels and the
optimal graph by allowing the learner the flexibility to choose
samples for labeling. AMSminimizes the regularization func-
tion in GBSSL by iterating between the active sample selec-
tion step and the graph reconstruction step, where the sam-
ples querying which leads to the optimal graph are selected.
Experimental results on four real-world datasets are provided
to demonstrate the effectiveness of AMS.

Index Terms— Graph Based Semi-Supervised Learning
(GBSSL), Model Selection, Active Learning, Gaussian Func-
tion, Gradient Descent

1. INTRODUCTION

In many practical applications of pattern classification and
data mining, one often faces a lack of sufficient labeled data,
since labeling often requires expensive human labor and much
time. However, in many cases, large number of unlabeled data
can be far easier to obtain. For example, in text classification,
one may have an easy access to a large database of documents
(e.g. by crawling the web), but only a small part of them are
classified by hand. Consequently, Semi-Supervised Learning
(SSL)methods, which aim to learn from partially labeled data,
are proposed[1].
In recent years, GBSSL has become one of the most active

research areas in SSL community [2]. GBSSL uses a graph
G =< V, E > to describe the structure of a dataset, where
V is the node set corresponding to the labeled and unlabeled
samples, and E is the edge set. In most of the traditional meth-
ods [3, 4, 5], each edge eij ∈ E is associated with a weight
wij , which reflects the similarity between pairwise samples.
The weight is usually computed by certain parametric func-
tion, i.e.,

wij = hθ(xi,xj , θ) (1)

Here, a specific choice of hθ and related parameters θ is called
a model, with which we construct the graph. The choice of
the model can affect the final classification result significantly,
which can be seen from the toy example shown in Fig. 1,
where hθ is fixed to Gaussian function,

wij = exp (−‖xi − xj‖2/(2σ2)) (2)

and classification results with different values of variance σ
are shown. However, as pointed out by [1], although at the
heart of GBSSL, model selection is still a problem that has
not been well studied.
To address such a problem, we propose an active learning

method, Active Model Selection (AMS), which aims at learn-
ing both data labels and the optimal model by allowing the
learner the flexibility to choose samples for labeling. Tradi-
tionally, active learning methods aim to query samples that
could decrease most the generalization error of the resulting
classifier. However, since graph construction is at the heart
of GBSSL, the active learning method we employ here tar-
gets to select the most informative samples for model selec-
tion. More concretely, the AMS algorithm selects samples,
querying which could lead to the optimal model. The AMS
algorithm first establishes an objective function composed of
two parts, i.e. the smoothness and the fitness of the data
labels, to measure how good the classification result of the
Semi-Supervised Learning task is. Then AMS will minimize
this objective function by alternating between the active sam-
ple selection step and the graph reconstruction step. Fig. 2
presents the flow charts of traditional active learning methods
and AMS to show the difference.

Fig. 2. Flow charts of (a) traditional active learning methods
and (b) AMS.
The rest of this paper is organized as follows. In section

2, we introduce some works related to this paper. The AMS
algorithm is presented in detail in section 3. In section 4,
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Classification Result with Sigma=0.15
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(c)

Classification Result with Sigma=0.4

Fig. 1. Classification results on the two-moon pattern using the method in [3], a powerful transductive approach operating on
graph with the edge weights computed by a Gaussian function. (a) toy data set with two labeled points; (b) classification results
with σ = 0.15; (c) classification results with σ = 0.4. We can see that a small variation of σ will cause a dramatically different
classification result.
we provide experimental results on four real-world datasets,
followed by the conclusions in section 5.

2. NOTATIONS AND RELATEDWORKS

In this section we will introduce some notations and briefly
review some related works of this paper.
Given a point set X = {x1, · · · ,xl,xl+1, · · · ,xn} and

a label set T = {−1, +1} (generalization to multi-class sce-
nario can be obtained in the same manner), where the first l
points in X are labeled as yi ∈ T , while the remaining points
are unlabeled. Our goal is to predict the labels of the unla-
beled points1. We denote the initial labels in the dataset by
an n × 1 vector y with yi = 1 or −1 if xi is labeled as pos-
itive or negative, and 0 if xi is unlabeled. The classification
result on the dataset X is also represented as an n × 1 vec-
tor f = [f1, . . . , fn]T , which determines the label of xi by
yi = sgn(fi). In GBSSL, we construct the n × n weight
matrix W for graph G with its (i, j)-th entry Wij = wij

computed by Eq.(1), and Wii = 0. The degree matrix D
for graph G is defined as an n × n diagonal matrix with its
(i, i)-entry equal to the sum of the i-th row of W . Finally,
the normalized graph Laplacian [7] for graph G is defined as
L = I − S = I − D− 1

2 (D − W )D− 1
2 .

Based on the above preliminaries, Zhou et al. proposed
the following regularization function [3] for GBSSL:

Q = (f − y)T (f − y) + λfT (I − S)f (3)

The first term in Eq.(3) restricts that a good classifying func-
tion should not change too much from the initial label assign-
ment, and the second term measures the smoothness of the
data labels. The regularization parameter λ > 0 adjusts the
tradeoff between these two terms. Thus, the optimal classi-
fication function can be obtained as: f∗ = arg minf Q =
(1 − α)(I − αS)−1y, where α = λ

1+λ . By letting f = f∗ in
Eq.(3), regularization functionQ is fully determined by initial
labels y and the model {hθ, θ}

Q(y, hθ, θ) = yT [I − (1 − α)(I − αS)−1]y = yT Ay (4)

1In this paper we concentrate on the transductive setting. One can easily
extend our algorithm to inductive setting using the method introduced in [6].

whereA = I−(1−α)(I−αS)−1 depends on hθ and θ. As we
noted in section 1, one of the problems existing in these graph
based methods is that the model (i.e. hθ and θ in Eq.(1)) can
affect the final classification results significantly. Moreover,
as shown in Eq.(4), the model and the labels y are dependent.
Specifically, the optimal model {hθ, θ} relies on the vector y.

3. ACTIVE MODEL SELECTION

In this section, we first propose a gradient descent based
model selection method for GBSSL. Then we provide details
of the Active Model Selection algorithm.

3.1. Model Selection via Gradient Descents

We fix the parametric function hθ to Gaussian Function in
this paper, as shown in Eq.(2) and select the optimal variance
σ. The derivative of Q w.r.t. σ can be calculated as follows

∂Q(y, σ)
∂σ

= −α(1−α)yT (I−αS)−1 ∂S

∂σ
(I−αS)−1y (5)

Since Sij = Wij√
DiiDjj

, we get

∂Sij

∂σ
=

W̃ij√
DiiDjj

− 1
2

WijD̃ii√
D3

iiDjj

− 1
2

WijD̃jj√
DiiD3

jj

(6)

W̃ij � ∂Wij

∂σ
=

∂ exp(− d2
ij

2σ2 )
∂σ

=
d2

ij exp(− d2
ij

2σ2 )
σ3

(7)

D̃ii � ∂Dii

∂σ
=

∂
∑

j Wij

∂σ
=

∑
j

∂Wij

∂σ
(8)

where dij is the distance between samples xi and xj , and
we employ Euclidean distance in this paper unless further no-
ticed. With the derivative of Q w.r.t. σ calculated above, the
model selection problem can be tackled with gradient descent.

3.2. Active Model Selection

Since the optimal model is determined via gradient based
method, the most informative samples for model selection
would be those that maximize the derivative of the objective
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function Q w.r.t. the model hyperparameter, in Gaussian
function, the variance σ. However, since querying those
samples that maximize |∂Q

∂σ | might increase the objective
function, we control the acceptance of such a query by intro-
ducing an acceptance probability determined by the increase
of Q. After the sample is queried, AMS retrains the model
and constructs the graph in GBSSL with this new model.
We assume only one sample is added to y at a time, there-
fore y = y0 + ykek, where y0 is the label vector before
querying sample xk, yk is the actual label for sample xk and
ek = (0, . . . , 0, 1, 0, . . . , 0) is the unit vector with only the
k-th element equal to 1.

y∗ = arg min
y

Q = arg min
y

(Q − Q0) = arg min
y

�Q (9)

where Q0 stands for the value of the regularization function
before querying the selected sample. The decrease of Q after
querying sample xk is �Q = 2yk[Ay0](k) + Akk, where
[Ay0](k) denotes the k-th element of the vector Ay0 with A
defined the same as in Eq.(4). The algorithm is as follows:
Initialization. Randomly initialize σ. Iterate between the

following two steps until convergence;
Active sample selection. Denote the present value of vari-

ance by σ∗, actively select sample xk, querying which max-
imizes

∣∣∣∂Q(σ,y)
∂σ |σ=σ∗

∣∣∣ and calculate �Q = Q(f+xk) − Q0.
If �Q ≤ 0, accept xk as the next sample for querying; else
accept xk with probability P (k) = exp

(
− �Q·l

kB(l−q)

)
, where

l is the total number of samples to query, q is the number of
samples already queried so far, and kB is Boltzmann’s con-
stant [8], which is chosen to be the largest possible decrease
of Q while selecting the first sample. If xk is not accepted,
check the next sample that leads to

∣∣∣∂Q(σ,y)
∂σ |σ=σ∗

∣∣∣ only less
than xk. Proceeds until one sample is accepted. Query xk

and set y = y0 + ykek;
Graph reconstruction. Calculate σ∗ = arg minσ Q(σ,y)

by gradient descent.
Actually, P (k) is the Boltzmann probability [8] with the tem-
perature selected as T = l−q

l . In the above algorithm, in-
stead of discarding those samples querying which might in-
crease Q, they can also be incorporated into the label vector
with controlled acceptance probability. Consequently, AMS
obtains the ability to jump out of local minima. With the
temperature T decreasing as more samples are queried, the
probability for accepting an uphill step also decreases.
Now we present how to select the sample querying which

maximizes |∂Q
∂σ |. According to Eq.(5), the derivative of Q

with respect to σ can be computed as ∂Q(σ,y)
∂σ = yT B(σ)y,

whereB(σ) = −α(1−α)[(I−αS)−1 ∂S
∂σ (I−αS)−1] only de-

pends on σ. Since in each iteration of AMS, the graph recon-
struction step optimizes the regularization functionQw.r.t. σ,
suppose the present label vector is y = y0,

∂Q(σ,y)
∂σ

|σ=σ∗,y=y0 = y0T
B(σ∗)y0 = 0 (10)

Hence, we only need to compute the increase of ∂Q(σ,y)
∂σ w.r.t.

the newly labeled sample. Denote the index of the newly la-
beled sample by k,

∂Q(σ,y)
∂σ

|σ=σ∗ = yT B(σ∗)y

= 2yk

m∑
j=1

Bkj(σ∗)y0
j + Bkk(σ∗)

= 2yk[B(σ∗)y0](k) + Bkk(σ∗) (11)

where [B(σ∗)y0](k) denotes the k-th element of the vector
B(σ∗)y0. Define the gain for labelling the k-th sample as
the increase of the derivative of Q w.r.t. σ after querying it,
therefore:

G(f+(xk,yk)) =
∣∣2yk[B(σ∗)y0](k) + Bkk(σ∗)

∣∣ (12)

Since we don’t know what answer yk we will receive, we as-
sume the answer is approximated with

p+1(yk) � p(yk = 1) ≈ 1
1 + e−fk

(13)

where p+1(yk) denotes the probability of yk = 1. The ex-
pected gain after querying node k is therefore:

G(f+xk)=p−1(yk)G(f+(xk,−1))+p+1(yk)G(f+(xk,+1))

≈
(
1− 1

1 + e−fk

)
|− 2[B(σ∗)y0](k)+Bkk(σ∗)|

+
1

1 + e−fk
|2[B(σ∗)y0](k)+Bkk(σ∗)| (14)

Hence, the next sample xk is selected as k = arg maxk′ G(f+xk′ ).
After the sample xk is selected, AMS checks if xk is accepted,
if not, check the next sample that leads to

∣∣∣∂Q(σ,y)
∂σ |σ=σ∗

∣∣∣ only
less than xk until one sample is accepted.

4. EXPERIMENTS

We validate the effectiveness of Active Model Selection on
four real-world datasets, the Breast Cancer and Ionosphere
datasets from UCI database2, USPS3, and 20-newsgroup4
datasets. Breast Cancer dataset contains 683 samples, and
Ionosphere contains 351 samples. The USPS handwritten
digits dataset contains images of 0, . . . , 9 as 10 classes.
Finally, we choose the topic rec which contains autos,
motorcycles, baseball and hockey from the 20-newsgroup
dataset version 20-news-18828. We preprocess the data in
the same manner as [3] and obtain 3970 document vec-
tors in a 8014-dimensional space. For document classifica-
tion, the distance between points xi and xj is defined to be
d(xi, xj) = 1 − xi·xj

||xi||||xj || .

2http://www.ics.uci.edu/∼mlearn/
3http://www.kernel-machines.org/data.html
4http://people.csail.mit.edu/jrennie/20Newsgroups/
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4.1. Comparison with Other Model Selection Methods
for GBSSL

In this section, we compare our active model selection (AMS)
method with three state-of-the-art model selection algorithms
for GBSSL, i.e., label entropy minimization (MinEnt) [5],
leave-one-out cross validation (LOO) [9] and evidence max-
imization (LEM) [10]. Moreover, to validate the novel ac-
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Fig. 3. Test accuracies on UCI, USPS and 20-newsgroup
datasets. (a) Breast cancer; (b) Ionosphere; (c) 1 vs 2; (d)
7 vs 9; (e) autos vs motorcycles; (f) baseball vs hockey. The
number of labeled samples increases from 2 to 100.
tive learning framework we propose in this paper, we also
compare with the method which simply iterates between tra-
ditional active learning and gradient descent based model
selection. We call this method Simple Iterative Combination
(SIC). SinceMinEnt, LOO and LEM only consider the binary
classification scenario, we provide experimental results on 6
two-way classification tasks. Test accuracies averaged over
20 random trials are reported. From Fig. 3 we can clearly see
the advantage of active model selection, i.e., with the same
amount of samples labeled, AMS achieves the highest classi-
fication accuracy. Moreover, the advantage of AMS over SIC
demonstrates the effectiveness of our active learning frame-
work, i.e., for GBSSL, active model selection is better than
combining traditional active learning and model selection.
However, as controlled uphill steps are incorporated in AMS,
it might take more time to converge than SIC.

4.2. Comparison with Other Classification Methods
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Fig. 4. Multi-category classification accuracies on USPS and
20-newsgroup datasets. (a) Digit recognition with USPS dig-
its dataset for a total of 3874 samples (a subset containing
digits from 1 to 4). (b) Text classification with 20-newsgroup
dataset for a total of 3970 document vectors.

We compare the performance of AMS on multi-category
classification tasks with two supervised methods, k-NN, SVM
and two semi-supervised methods, LLGC [3] and harmonic
function [5] in this section. The parameters in k-NN, SVM,
LLGC and harmonic function are tuned by grid search. The
number of labeled samples increases from 4 to 50 and test ac-
curacies averaged over 50 random trials are reported. Figure
4 shows a clear advantage of AMS on multi-category classifi-
cation.

5. CONCLUSIONS

We propose an active learning method, Active Model Selec-
tion, to solve the model selection problem for GBSSL. Differ-
ent from traditional active learning methods, AMS queries the
most informative samples for model selection. Experimental
results on both toy and real-world datasets show the effective-
ness of AMS even with only few samples labeled.
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