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ABSTRACT
Many ensemble classi cation systems apply supervised learn-
ing to design a function for combining classi er decisions,
which requires common labeled training samples across the
classi er ensemble. Without such data, xed rules (voting,
Bayes rule) are usually applied. [1] alternatively proposed a
transductive constraint-based learning strategy to learn how
to fuse decisions even without labeled examples. There, deci-
sions on test samples were chosen to satisfy constraints mea-
sured by each local classi er. There are two main limita-
tions of that work. First, feasibility of the constraints was
not guaranteed. Second, heuristic learning was applied. Here
we overcome both problems via a transductive extension of
maximum entropy/improved iterative scaling for aggregation
in distributed classi cation. This method is shown to achieve
improved decision accuracy over the earlier transductive ap-
proach on a number of UC Irvine data sets.

Index Terms— distributed ensemble classi cation, max-
imum entropy, constraint-based learning, transductive learn-
ing, iterative scaling

1. INTRODUCTION
Ensemble systems form ultimate decisions by aggregating hard
or soft decisions made by individual classi ers. Common la-
beled training data is needed if one is to jointly design the
local classi ers in a supervised fashion as in boosting and
mixture of experts, or to learn the aggregation function which
combines classi er decisions. Without common labeled train-
ing data, xed rules such as voting and Bayes rule are often
applied. Fundamental de ciencies of xed rule methods are:
1) individual classi ers might assume incorrect class prior
probabilities [1]; 2) statistical dependencies between individ-
ual classi ers are ignored or improperly accounted for.

[1] proposed a transductive, constraint-based (CB) method,
where each local classi er contributes statistical constraints
that the aggregation function must satisfy through the deci-
sions it makes on test samples. CB effectively corrects inac-
curate local class priors in making fused decisions, accounts
for dependencies between classi ers, and does so without any
communication between local classi ers. [1] used a heuristic
gradient descent method, which chose the ensemble posterior
pmfs on test samples to encode the constraint probabilities,

measured by local classi ers P
(j)
g [Ĉj |C = c]. The aggrega-

tion function forms estimates of these constraints Pm[Ĉj |C =
c] to minimize the cross entropy function:

R=
Me∑
j=1

D(Pm[Ĉj |C=c]Pm[C=c]||P (j)
g [Ĉj |C=c]Pm[C=c]), (1)

where Me is the number of local classi ers and Pm[C = c]
is the new (estimated) class prior. [1] showed the derivation
and full explanation of this method. Two limitations of the
heuristic learning are: 1) it does not guarantee feasibility of
the constraints because the local classi er training support (on
which constraint probabilities are measured) and the test sup-
port (on which model estimates are learned) are different; 2)
even when the constraints are feasible, there is a set of feasi-
ble solutions. The heuristic solution in [1] is not unique and
does not ensure good test set accuracy.

In this paper we overcome these problems by proposing
a transductive extension of maximum entropy/improved iter-
ative scaling [3] for aggregation in distributed classi cation.
Our rst contribution is to augment the test support with train-
ing support to ensure the feasibility of constraints. Since the
constraint probabilities are measured on training support, this
augmentation guarantees constraint feasibility. To further im-
prove classi cation performance, we also impose a constraint
on mass allocation on the test support, seeking to make it as
large as possible. In this way, we try to satisfy constraints
as “transductively” as possible, i.e., making the least possible
use of the support augmentation.

Our second contribution is to propose a transductive it-
erative scaling (TIS) algorithm based on the maximum en-
tropy (ME) principle which ensures uniqueness of the solu-
tion. Given measured constraints, the ME solution has been
justi ed as the “least-biased” solution from a number of theo-
retical standpoints [2]. We have found this approach achieves
greater accuracy than both the heuristic CB method [1] and
xed aggregation rules.

2. CONSTRAINT-BASED DISTRIBUTED
CLASSIFICATION SYSTEM

As Fig. 1 shows, there are Me local classi ers and Nc classes;
the j-th local classi er is designed based on its own (separate)
training set X̃j={(x̃(j)

i ,c̃
(j)
i ), i=1, . . . ,Nj}, where x̃

(j)
i and c̃

(j)
i
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Fig. 1. Constraint-based distributed classi cation system.

are the feature vector and class label. We de ne Xj={̃x(j)
i }.

A batch of test samples,Xtest={x1,x2, . . . ,xNtest
} are input

to the distributed system with the concatenated vector x=
(x(1),. . . ,x(Me)). Here, x(j), j=1,. . . ,Me is the component
feature vector for classi er j. Classi er j produces hard/soft
decisions {Pj[Ĉj = ĉ|x(j)]∈[0,1], ĉ=1,. . . ,Nc, j = 1,. . . ,Me}
based on feature vector x(j). The aggregation function makes
nal decisions {Pe[C=c|x],x∈Xtest}.

In our distributed setting, because there are no common
labeled training data and there may be class prior probability
mismatch between training and test data, [1] encoded condi-
tional pairwise pmfs {P (j)

g [Ĉj=ĉ|C=c], ∀ĉ, c} as the constraint
probabilities from local classi er j. They are measured by

P (j)
g [Ĉj=ĉ|C=c]=

Nj∑
i=1:c̃

(j)
i =c

Pj [Ĉj=ĉ|x̃(j)
i ]

Nj∑
i=1:c̃

(j)
i =c

1
, ∀j, c, ĉ. (2)

The aggregation function’s transductive model estimates are

Pm[Ĉj=ĉ|C=c]=

Ntest∑
i=1

Pe[C=c|xi]Pj [Ĉj=ĉ|x(j)
i ]

Ntest∑
i=1

Pe[C=c|xi]
, ∀j, c, ĉ. (3)

The objective is to choose the ensemble posteriors {{Pe[C =
c|xi]∀c}} so that the transductive estimates match the con-
straints, i.e.,

Pm[Ĉj=ĉ|C=c]=̇P (j)
g [Ĉj = ĉ|C=c], ∀j, c, ĉ. (4)

This was heuristically achieved in [1] by minimizing (1).

3. ME/TIS METHOD
Supposing a uniform mass assignment to test support points,
i.e., Pe[x] = 1

Ntest
, ∀x ∈ Xtest, the standard approach to

nding a unique conditional distribution {Pe[c|x]} satisfying
given constraints (4) is to invoke the principle of maximum
entropy [2]:

Parameters: {P [c|x], x∈Xtest}

Maximize:

H(C|X) = −
∑

x∈Xtest

1
Ntest

∑
c

Pe[c|x] log Pe[c|x], (5)

Subject to:∑
c

Pe[c|x] = 1 ∀x ∈ Xtest

Pm[Ĉj=ĉ|C=c] = P
(j)
g [Ĉj=ĉ|C=c] ∀j, c, ĉ.

(6)

A serious dif culty with this approach is that the con-
straints may be infeasible because the constraints are mea-
sured using each local classi er’s training support, but we are
attempting to satisfy them using different (test) support. An
example was given in [1]. To overcome this, we propose to
augment the test support to ensure feasibility. The simplest
way is to augment with local training support.

3.1. Augmentation with Local Training Supports
Since the constraints were measured on each local classi er’s
support, augmenting the test support with the local training
sets guarantees constraint feasibility. Some care must be taken,
however, to ensure that suf cient probability mass is allocated
to the training supports to ensure constraint feasibility – e.g.,
a uniform mass assignment to all support points, both test and
training, will not in general ensure feasibility. Thus, we allow
exible allocation of probability mass to the training supports

(both the total mass allocated to the training supports and how
it is distributed across the training support points), choosing
the joint pmf to have the form:

Pe[c,{x}]=
{ Pu

Ntest
Pe[c|x] x ∈ Xtest

P [x̃(j), c̃(j)] {x :x(j)=x̃(j)}, (x̃(j), c̃(j))∈X̃j

0 else.

(7)

Here, the total mass allocated to Xtest isPu=
∑

x∈Xtest

∑
c

Pe[c, x]

and each test sample is assigned equal mass Pu

Ntest
. Pu, {Pe[c|x]}

and {P [x̃(j), c̃(j)]}, the probabilities assigned to the augmented
support points, are all parameters we will learn.

Accordingly, we need compute the transductive estimates

Pm[Ĉj = ĉ|C = c]= Pm[Ĉj=ĉ,C=c]
Pm[C=c] , using the joint pmf (7).

However, a dif culty is that (7) is de ned on the support set
Xtest

⋃
kXk, but the posteriorPj[Ĉj=ĉ|x(j)] can only be eval-

uated on the support subsetXtest

⋃Xj . This means we cannot
use full support to measurePm[Ĉj=ĉ|C=c]. We resolve this

issue by conditioning. Let X (j)
r ={{x∈Xtest}

⋃{x : x(j)∈Xj}},
then we measure

Pm[Ĉj=ĉ|C=c,x∈X (j)
r ]=

Pm[Ĉj=ĉ, C=c,x∈X (j)
r ]

Pm[C=c,x∈X (j)
r ]

. (8)

LettingNm[Ĉj=ĉ,C=c,x∈X (j)
r ]≡K0Pm[Ĉj=ĉ,C=c,x∈X (j)

r ]
and Nm[C=c,x∈X (j)

r ]≡K0Pm[C=c,x∈X (j)
r ], where K0 is

the same normalization constant in both equations, ensuring
these pmfs both sum to 1, we have

Pm[Ĉj=ĉ|C=c,x∈X (j)
r ]=

Nm[Ĉj=ĉ, C=c,x∈X (j)
r ]

Nm[C=c,x∈X (j)
r ]

. (9)
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The notation Nm[·] re ects the fact that this quantity repre-
sents the expected number of occurrences of the joint event
for x ∈ X (j)

r . Here,

Nm[C=c,x∈X (j)
r ]=

Pu

Ntest

∑
x∈Xtest

Pe[c|x] +
∑

x̃(j)∈Xj ,c̃(j)=c

P [x̃(j), c̃(j)],

(10)

Nm[Ĉj=ĉ, C=c,x∈X (j)
r ]=

Pu

Ntest

∑
x∈Xtest

Pj [Ĉj=ĉ|x(j)]Pe[c|x]

+
∑

x̃(j)∈Xj,c̃(j)=c

P [Ĉj=ĉ|x̃(j)]Pj [x̃
(j), c̃(j)]. (11)

From (9)-(11), the constraints (4) are nonlinear in the param-
eters that need to be learned, but IIS algorithm [3] requires
linear constraints. Whereas, it is possible to relax the con-
straints (4), based on (9), to linear ones. In particular, assum-
ing Nm[C=c,x∈X (j)

r ]>0, we may multiply (4) through by

Nm[C=c,x∈X (j)
r ] and write the equivalent linear constraints:

Nm[Ĉj=̂c,C=c,x∈X (j)
r ]=P(j)

g [Ĉj=̂c|C=c]Nm[C=c,x∈X (j)
r ].

(12)
To make test set posteriors as accurate as possible, they

should contribute as much as possible to constraint satisfac-
tion, i.e., we have the following loosely stated learning prin-
ciple: seek the minimal use of the extra training support nec-
essary to achieve the constraints. We add an extra constraint
1−Pu = P ∗

o and seek to nd the minimum value P ∗
o such that

the constraints are still feasible. When the test set support is
suf cient to meet the constraints, P ∗

o = 0; otherwise P ∗
o > 0.

Finally, we de ne the transductive ME distributed prob-
lem as:
Parameters:Pu,{P [c|x], x∈Xtest},{p[x̃(j), c̃(j)],(x̃(j), c̃(j))∈X̃j}
Maximize:

H(C,X) = −
∑

x∈Xtest

Pu

Ntest

∑
c

Pe[c|x] log
(

Pu

Ntest
Pe[c|x]

)

−
∑

j

∑
(x̃(j),c̃(j))∈X̃j

P [x̃(j), c̃(j)] log P [x̃(j), c̃(j)] (13)

Subject to:
Nm[Ĉj=̂c,C=c,x∈X (j)

r ]=P
(j)
g [Ĉj=̂c|C=c]Nm[C=c,x∈X (j)

r ]

∀j, c, ĉ∑
c

Pe[C = c|x] = 1 ∀x ∈ Xtest

Pu +
∑
j

∑
(x̃(j),c̃(j))∈X̃j

P [x̃(j), c̃(j))] = 1

1 − Pu = P ∗
o

(14)

3.2. Transductive Iterative Scaling (TIS) Algorithm
We invoke the method of Lagrange Multipliers to solve (13)-
(14). {γ(Ĉj=ĉ, C=c)∀j, c, ĉ} are the Lagrange Multipliers
associated with the local classi er constraints, which need to
be learned. α and λ(x), ∀x∈Xtest will be automatically cho-
sen to satisfy the sum constraints. β is an “external” parame-
ter used to set 1−Pu as previously discussed. The Lagrangian
cost function is

L(β) = −
∑

x∈Xtest

Pu

Ntest

∑
c

Pe[c|x] log Pe[c|x]−Pu log
Pu

Ntest

−
∑

j

∑
(x̃(j),c̃(j))∈X̃j

P [x̃(j), c̃(j)] log P [x(j), c̃(j)]

+
∑
j,c,ĉ

γ(Ĉj=ĉ, C=c)(Nm[Ĉj=ĉ, C=c,x∈X (j)
r ] −

P (j)
g [Ĉj = ĉ|C = c]Nm[C = c,x ∈ X (j)

r ])

+α(Pu +
∑

j

∑
(x̃(j),c̃(j))∈X̃j

P [x̃(j), c̃(j)] − 1)

+
∑

x∈Xtest

λ(x)(
∑

c

P [c|x] − 1) + β(1 − Pu) (15)

The TIS algorithm consists of alternating i) optimization
of Pu,{Pe[c|x]}and{P [x̃(j), c̃(j)]}given{γ} held xed, followed
by ii) update of{γ} given the other parameters xed. At xed
β, in each iteration we measure the Deviation D, i.e., the
squared Euclidean distance betweenNm[Ĉj=ĉ, C=c,x∈X (j)

r ]
and P

(j)
g [Ĉj = ĉ|C=c]Nm[C=c,x∈X (j)

r ], summed over all
j, c, ĉ, and stop when ΔD is less than a threshold value. TIS
algorithm solves a convex optimization problem, descending
in L(β) and converging to the unique ME solution at each β
for which the constraints are feasible. If the problem is infea-
sible at a given β, convergence of the algorithm is not guaran-
teed. When β→−∞, Pu=1 and we are seeking a solution that
only relies on the test set support. When β→∞, Pu=0 and we
are not using the test support at all. When β=0, there is no
constraint on Pu – this solution thus achieves highest entropy
H(C,X), compared to solutions at other β values.

Furthermore, we use an external bisection search over β
for P ∗

o . The overall algorithm terminates when one of two
conditions is satis ed: 1) At the current β, constraint satis-
faction is not achieved. This indicates that P ∗

o is greater than
the value 1 − Pu associated with the current β. 2) At the cur-
rent β, at termination of TIS, 1 − Pu < δ, where δ is a small
number. In this case, we have essentially found that there is
an ME solution satisfying the constraints using only the test
support, i.e., P ∗

o ≈ 0.

4. EXPERIMENTS
[1] gave an example of constraint nonsatis ability, i.e., the
heuristic CB method in [1] could not satisfy all constraints
only using {{Pe[c|x]}, x ∈ Xtest}. This is still true for the
ME/TIS method if no support augmentation is used. Fig. 2
shows the Lagrangian cost function and Deviation for ME/TIS
with and without training support augmentation. The up-
per two gures show the Lagrangian monotonically decreases
without convergence and the Deviation does not approach
zero, which means the solution is infeasible. The lower two
gures show ME/TIS (β=0) with local training support aug-

mentation and demonstrate a feasible solution is achieved.
Next, we evaluated on data sets from the UC Irvine ma-

chine learning repository that were also used in [1] and we
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Fig. 2. Constraint satis ability for ME/TIS algorithm.

followed the experimental protocol from [1]. To simulate a
distributed classi cation environment we used ve local clas-
si ers, each a naive Bayes classi er working on a randomly
selected subset of features. All features in the data sets are
continuous-valued and were modeled by (class-conditional)
Gaussian densities. We performed ve replications of two-
fold cross-validation for all data sets and measured the av-
erage error rate over all ten test folds. We evaluated classi-
cation accuracy for varying test set priors. A new test set

with given priors was obtained by sampling with replacement
from the original test set. We quanti ed the mismatch be-
tween test set priors (Ptest[C = c]) and local training set pri-

ors (P (j)
trn [C = c]) by the sum of cross entropies:

M =
Me∑
j=1

Nc∑
c=1

P
(j)
trn [C = c] log

(
P

(j)
trn [C = c]

Ptest[C = c]

)
. (16)

We also considered the case where one class was entirely
missing from the test set.
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Fig. 3. The in uence of β on TIS algorithm (diabetes).

Fig. 3 shows the in uence of β on the ME/TIS for di-
abetes. We measured four different values: Deviation, joint
entropy, classi cation error rate on the test data, and mass
allocation (Pu on the test support and Pl=1−Pu on the train-
ing support). We plotted curves for 3 mismatch cases. We
changed β from −20 to 10 with Δβ = 1 and, for each β,
we ran ME/TIS until ΔD < 10−9. In (a), when β < −6,
the Deviation does not approach 0 when ME/TIS terminates.
This demonstrates constraint infeasibility may occur at nite
β (when Pl is made too small). ME/TIS achieves peak en-
tropy at β = 0 as (b) shows (no constraint on mass allocation)
and when β goes either negative or positive, the joint entropy
decreases. In (d), as β becomes more negative, the test sup-
port gets more probability mass allocation Pu. However, the
rate of Pu increase decreases as β becomes more negative,
because it is dif cult to satisfy the local constraints if the TIS
algorithm assigns too much probability mass to the test set.

data set M ME/TIS heuristic CB
Err Ent Err Ent

0.98 0.53 0.86 0.59 0.08
vehicle 2.73 0.49 0.76 0.60 0.11

missing 0.47 0.73 0.62 0.09
0.74 0.26 0.43 0.28 0.03

diabetes 2.57 0.21 0.30 0.27 0.01
missing 0.01 0.11 0.18 0.02

0.89 0.28 0.33 0.32 10−3

sonar 2.28 0.20 0.25 0.33 10−6

missing 0.16 0.21 0.34 10−6

Table 1. Classi cation performance (error rate and condi-
tional entropy on the test set) comparison between ME/TIS
and the heuristic CB method in [1] .

In Table 1, we compare ME/TIS with the heuristic CB
method in [1]. We can see ME/TIS achieves better classi-
cation error rates than the heuristic CB method and higher

entropy as we would expect, since it seeks the maximum en-
tropy solution.

5. CONCLUSION
In this work, we have proposed a new ME framework for
transductive learning of decision aggregation rules when there
is no common labeled data across local classi ers. The new
approach overcomes constraint infeasibility and nonunique-
ness of the solution and achieves better results than the heuris-
tic CB method in [1].
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