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ABSTRACT

Long-wave infrared (LWIR) hyperspectral imaging sensors
are widely used for the detection and identification of released
chemical agents in many civilian and military applications.
Current hyperspectral system capabilities are limited by vari-
ation in the background clutter as opposed to the physics of
photon detection. Hence, the development of statistical mod-
els for background clutter and optimum signal processing al-
gorithms that exploit these models are essential for the design
of practical systems that satisfy user’s requirements. This pa-
per describes a signal processing system for the detection and
identification of released chemical agents developed at MIT
Lincoln Laboratory. We discuss the underlying signal models,
key detection and identification algorithms, and some areas
where the signal processing community could contribute.

Index Terms— Remote plume detection, infrared spec-
troscopy,array signal processing, adaptive signal detection

1. INTRODUCTION

Standoff detection of chemical warfare agents (CWAs) is nec-
essary when physical separation is required to put people and
assets outside the zoneof severe damage. An important class of
standoff sensors for CWAs is based on the principles of passive
infrared (IR) spectroscopy. Typical standoff CWA sensors [1,
2] utilize passive imaging spectroscopy in the LWIR atmo-
spheric window (8-13μm). The LWIR region is well suited for
gas-sensing applications because of the relative transparency
of the atmosphere at these wavelengths and the presence of
unique identifying spectral signatures for a wide range of
chemicals.
In this paper, we describe and demonstrate the operation

of a complete automated system for the detection of chemical
clouds using an LWIR imaging spectrometer. We start with
the description of a physics-based signal model that provides
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the basis for the development of the required signal processing
algorithms. Then, we provide a brief description of the signal
and clutter models, detection algorithms, constant false alarm
threshold selection, discrimination-identification algorithms,
spatial false alarm mitigation, and experimental results using
data sets collected by a Telops FIRST hyperspectral (FTIR)
sensor on an acetic acid explosive release at the Dugway Prov-
ing Ground in Utah. Due to space limitations, the description
of the various signal processing algorithms will be concise.
More experimental results demonstrating the performance of
the automated system, in the form of movies, will be shown at
the conference presentation.

2. PHYSICS-BASED RADIANCE SIGNAL MODEL
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Fig. 1. Three-layer plume radiance transfer model.

The physical basis for gas detection in LWIR can be explained
with the following simplified model [2] (see Figure 1)

Lon(λ)− Loff(λ) = [
1− τp(λ)

]
τa(λ)

[
B(λ, Tp)− Lb(λ)

]
(1)

where Lon(λ) is the radiance reaching the sensor when the
plume is present, Loff(λ) is the radiance reaching the sensor
when the plume is absent, τa(λ) is the atmospheric transmis-
sion between the chemical cloud and the sensor, Lb(λ) the
radiance of the background, B(λ, Tp) is the Planck function
evaluated at the plume temperature, and

τp(λ) = exp [−α(λ)× CL] (2)

is the plume transmission function as expressed by Beer’s law.
We note that all quantities in (1) and (2) are functions of wave-
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length λ or equivalently the wavenumber ν. Natural back-
grounds include low-angle sky, mountains, vegetation, urban
environments, etc. All of these backgrounds emit infrared ra-
diation in the 7-14 μm spectral region.
The function α(λ), which is known as the absorption co-

efficient spectrum, is unique for each gaseous chemical and
can be used as a spectral fingerprint. The quantity CL, which
is called the concentration pathlength, is the product of two
terms: the term L, which is the length along the sensor bore-
sight that represents the depth of the cloud, and the term C,
which is the average concentration along that pathlength.
The exponential relationship between the signal of inter-

est α(λ)× CL and the sensor-measured differential radiance
(spectral contrast) Lon(λ)− Loff(λ), makes the detection and
identification of gaseous chemicals a challenging problem.
However, in many practical situation we can make the fol-
lowing assumptions:

• The plume is optically thin, that is, CL � 1. In this
case, we can use the following linear approximation of
Beer’s law: τp(λ) ≈ 1− α(λ)× CL.

• The emissivity of the background in the vicinity of sig-
nificant gas absorption features is a smooth curve. Then,
we can use the approximation Lb(λ) ≈ B(λ, Tb).

• We can use a local linear approximation of Planck’s
function about the plume temperature (valid for |Tp−Tb|
less than 30 degrees C).

Under these conditions, we can show that [2]

Lon(λ) ≈ (const× CL×�T )τa(λ)α(λ)+ Loff(λ) (3)

which provides the basis for the development of the detection
and identification algorithms used in this paper.

3. TARGETAND CLUTTER MODELING

Equation (3) is a linear relationship, which can be expressed
in vector form by sampling atK wavelengths λ1, λ2, . . . , λK ,
determined by the characteristics of the sensor. The results is
the following linear signal model

x = as + v (4)

where x � [Lon(λ1) . . . Lon(λK)]T
a � const× CL×�T

s � [τa(λ1)α(λ1) . . . τa(λK)α(λK)]T
v � [Loff(λ1) . . . Loff(λK)]T

The spectral signature s is determined using measurements
of α(λk) from high resolution spectral libraries and predicted
values of τa(λk) obtained using the atmospheric transmission
code MODTRAN.

The background clutter is modeled using a multivariatet-
elliptically contoured distribution with density function

f (x) =
�

(
K+ν
2

)
(πν)

K
2 �

(
ν
2
)√|R|

[
1+ 1

ν
(x − μ)T R−1(x − μ)

]−K+ν
2

(5)
where �( ) is the Gamma function. The number of degrees of
freedom ν controls the tails of the distribution: ν = 1 leads to
themultivariate Cauchy distribution (heavier tails), whereas as
ν →∞ the t-distribution approaches the multivariate normal
distribution (lighter tails). The mean and covariance of x are
given byE(x) = μ and Cov(x) = ν

ν−2R, ν ≥ 3, respectively.
The quadratic form in (9) is distributed as an F-distribution

δ2 = 1
ν
(x − μ)T R−1(x − μ) ∼ FK,ν (6)

withK and ν degrees of freedom. The value of ν controls the
thickness of the distribution’s tails. The estimation of these
models from real data, which is illustrated in Figure 2, is dis-
cussed in [3].

Fig. 2. Modeling thermal hyperspectral backgrounds with a t-
ECD relies on estimating the heavy-tail parameter by fitting a
mixture of two F-distributions into the Mahalanobis distance.

4. DETECTIONALGORITHMS

The signal model (4) describes how the presence of plume
changes the radiance v of a background pixel. This change,
which is known as radiance contrast, can be exploited to detect
the presence of a CWA using statistical detection techniques.
We have found out that the matched filter detector

yMF =
sT �̂

−1
b (x − μb)

sT �̂
−1
b s

(7)

and the adaptive cosine/coherence estimator (ACE)

yACE =
[sT �̂

−1
b (x − μb)]2

(sT �̂
−1
b s)[(x − μb)T �̂

−1
b (x − μb)]

(8)

provide good performance by exploiting statistical distance
and angle separation in the spectral space. The quantities
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μb and �b are maximum likelihood estimates obtained from
plume-free background clutter. More details about the appli-
cation of these algorithms to hyperspectral target detection and
plume detection problems can be found in [3].

5. CONSTANT FALSEALARM RATE PROCESSOR

Fig. 3. Illustration of GPD-based CFAR threshold selection.

The tails of the plume-free background distribution at the
output of the matched filter or ACE detectors can be modeled
with sufficient accuracy using the generalized Pareto distribu-
tion (GPD) [4]. Given a sufficiently high “tail-threshold” u,
the distribution Fu(z) = Pr(X − u ≤ z|X > u) of excess
values z = x − u of x over u, converges to the GPD

G(z) =
{
1− (

1+ ξ z
σ

)−1/ξ
, ξ �= 0

1− exp(−z/σ), ξ = 0 (9)

which is defined for z > 0 and 1+ ξz/σ > 0. The quantities
σ > 0 and ξ are known as scale and shape parameters, respec-
tively. The GPD has heavy tails for ξ > 0, exponential tails
for ξ = 0, and a finite upper endpoint at −σ/ξ for ξ < 0.
The parameters of this model are estimated from the data

using the method of maximum likelihood. The GPD fitted to
the data can be used to approximate the tail of the unknown
underlying distribution. If we denote by η̂ the estimate of the
threshold corresponding to a false alarm probability PFA, we
have

η̂ = u+ σ̂

ξ̂

[(
α

PFA

)ξ̂

− 1
]

(10)

where u is the threshold used to estimate the parameters of the
GPD and α is the fraction of samples above this threshold.

6. DISCRIMINATIONAND IDENTIFICATION
ALGORITHMS

The task of assigning a hit to one of a predetermined num-
ber of CWA classes is known as discrimination. When each

class consists of a single CWA agent, discrimination is known
as identification. The theoretical framework for detection
and discrimination is the theory of statistical hypothesis test-
ing. Therefore, detection and discrimination have some formal
similarities; however, they also have some important differ-
ences.
A criterion for discrimination performance should take into

consideration the importance of different CWA threats. If all
threats are symmetrically treated, a meaningful figure of merit
is the probability of correct discrimination (PCD) defined by
PCD =

∑p

k=1 Pr(D = sk|T = sk). Using the signal model (3),
the discrimination problem can be stated as testing between
the following p hypotheses (k = 1, . . . , p)

Hk : x = aksk + v ∼ NK(aksk + μb, �b) (11)

If {ak, sk, μb, �b} are known, the PCD is minimized by the
maximum likelihood classifier. This classifier computes the
Mahalanobis distances of the pixel under test x from each aksk

�2k = (x − μb − aksk)
T �

−1
b (x − μb − aksk) (12)

and assigns x to the “closest” (according to �k) CWA. In
practice, ak ,μb, and�b have to be estimated from the available
data. The generalized least-squares estimate of ak is given by

âk =
sT
i �̂

−1
b (x − μ̂b)

sT
i �̂

−1
b μ̂b

(13)

Substitution into (12) provides a practical discrimination al-
gorithm. Another approach is to use the F-test developed in
linear regression analysis [5].

7. SPATIAL DISTRIBUTION OF FALSEALARMS

Figure 4 shows an example of the spatial point pattern gener-
ated by the top one percent hits at output of the matched filter
for a plume-free cube and its probability distribution. It turns
out that this spatial pattern follows a complete spatial random-
ness (CSR) model. This result and the fact that plume pixels
appear in spatial clusters allows the use binary integration, “M
of N” detection, or coincidence detection to improve detection
performance. Binary detection is used in the automated sys-
tem as part of the false alarm mitigation process.

8. AUTOMATED CWA DETECTION SYSTEM

Figure 5 shows the basic components of the automated CWA
detection/identification system. This system has been imple-
mented in the form of a flexibleMATLAB processing pipeline
which allows quick experimentation with different algorithms
and data sets.
To illustrate the operation of the system we use data col-

lected by a Telops FT-IR FIRST hyperspectral sensor on an
acetic acid explosive release at the Dugway Proving Ground
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Fig. 4. Extreme values of thematched filter detection statistics
and themodeling of their spatial distributionwith the complete
spatial randomness (CSR) model.
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Fig. 5. Automated signal processing system for hyperspectral
chemical plume detection and identification.

in Utah. The specific LWIR data set used was taken on Au-
gust 3rd, 2006 at approximately 11:30am in the morning. The
Field-of-View (FOV) of the sensor was 150 x 320 pixels, with
104 spectral bands from 8-11μm and an instantaneous FOV of
0.342mrad. The ambient temperature at the time of the release
was 29.68 degrees Celsius (302.85K), and the ambient relative
humidity was 26%. In total, 43 hyperspectral cubes were cap-
tured over a span of 3.35 minutes, 22 of which were captured
pre-release. There are approximately 4-5 seconds between
cubes. The data used has a mountainous background scene
consisting of three distinct regions: sky, mountain, and field.
As an illustration, Figure 6 shows the output of the matched
filter for a cube with an acetic acid plume present. Red (blue)
indicates plumewarmer (colder) than the background. Movies
demonstrating the operation and performance of the system
with various data sets will shown at the conference presenta-
tion.

Fig. 6. Example of matched filter output detection statistics.

9. SUMMARY

The objective of the work reported in this paper is to develop
real-time capability to detect, identify, quantify, and track the
presence of chemical warfare agent threats at physiologically
significant levels. We have developed and implemented in
MATLAB a fully automated system for detection and identi-
fication of chemical plumes. The performance of the system
has been evaluated with data collected by the USArmy, Edge-
wood Chemical and Biological Center, for various types of
chemical agents and backgrounds.
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