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ABSTRACT

The classical Bayes decision theory [1] is the foundation of statisti-
cal pattern recognition. Conventional applications of the Bayes de-
cision theory result in ubiquitous use of the maximum a posteriori
probability (MAP) decision policy and the paradigm of distribution
estimation as practice in the design of a statistical pattern recognition
system. In this paper, we address the issue of non-uniform error cri-
teria in statistical pattern recognition, and generalize the Bayes deci-
sion theory for pattern recognition tasks where errors over different
classes have different degrees of significance. We further propose
extensions of the method of minimum classification error (MCE)
[2] for a practical design of a statistical pattern recognition system
to achieve empirical optimality when non-uniform error criteria are
prescribed. In addition, we apply our method upon speech recogni-
tion tasks. In the context of automatic speech recognition (ASR), we
present a variety of training scenarios and weighting strategies under
our framework. The experimental demonstrations for both general
pattern recognition and continuous speech recognition are provided
to support the effectiveness of our new approach.

Index Terms— Non-Uniform error cost, Weighted MCE train-
ing

1. INTRODUCTION

The classical Bayes decision theory [1] is the foundation of statis-
tical approach to the problem of pattern recognition. Bayes’ anal-
ysis of the pattern recognition problem is built upon the notion of
an expected system performance, as opposed to the evaluation of
any particular instances of recognition decisions. Consider a pattern
recognition task involvingM classes of events or patterns (e.g., the
task of recognizing a handwritten digit withM = 10). An unknown
pattern, sayX, is observed and recognized as belonging to one of the
M classes. Thus, a recognizer is a function C that mapsX to a class
identity denoted by Ci, where i ∈ IM = {i, i = 1, 2, . . . , M}. We
denote this function as a decision function C(X). Obviously, some
decisions are likely to be correct while others wrong, and correct
decisions are preferred over wrong decisions. In other words, every
decision is associated with a cost which can be expressed as an entry
εij in anM×M matrix where i, j ∈ IM , signifying the cost in iden-
tifying a pattern from the jth class as one of the ith class. Suppose at
our disposal we have the knowledge of the a posteriori probabilities
P (Ci|X), ∀i ∈ IM . Then, following the teaching of Bayes, given
X, the conditional cost of making a decision of C(X) = Ci can be

defined as [1]

R(Ci|X) =
MX

j=1

εijP (Cj |X) (1)

and the system performance in terms of the expected loss is

L = E{R(C(X)|X)} =

Z
R(C(X)|X)p(X)dX (2)

Traditionally. a simple error count is used as the cost of recognition
decision with

εij =

j
1, i �= j
0, i = j

(3)

which is a typical error cost function. This cost function is the most
intuitive and prevalent performance measure in pattern recognition
as it is related to the probability of error in simple terms. We can
institute the decision policy with the cost function of (3) as

C(X) = arg min
i

R(Ci|X) = arg max
i

P (Ci|X) (4)

The expected loss of (2) will be minimized due to the fact that p(X)
is non-negative. This is the ubiquitous maximum a posteriori (MAP)
decision rule that guarantees minimum system cost, or Bayes risk
[1].

Note that the above Bayes decision theory requires that the a
posteriori distribution needs to be available to the system. The result
of (4) has led to the conventional paradigm of distribution estimation
as a fundamental step towards the design of a pattern recognition sys-
tem. However, due to lack of knowledge of the analytical functional
form of the a posteriori distribution, the optimality of the distribu-
tion estimation method is usually hindered. Further more, when the
cost function is not uniform, the best decision policy is not necessar-
ily the one that achieves maximum a posteriori probability. Instead,
we may want an “optimal” decision policy which can accomplish the
minimum error cost/risk. The non-uniform or asymmetric error cost
function is quite common in real world applications. For example, a
keyword spotting system may consider misrecognizing “key” words
unacceptable, while errors of functional words such as “a” or “the”
may not be considered consequential. It is necessary to revisit the
Bayes decision theory and discuss the validity of the conventional
MAP policy when non-uniform error criteria are employed. The pur-
pose of this paper is therefore to reformulate a framework for such
applications in pattern recognition. In addition, we attempt to pro-
vide what may be considered a reasonable system design method-
ology to follow the circumstances that the real data distribution is
unknown.
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In this paper, in addition to Fgeneral pattern recognition experi-
ments, we apply our framework to ASR tasks as well. Speech recog-
nition is a typical task that the form of data distribution function
(or probability density function) is usually unavailable, leaving no
assurance of any optimality if using distribution estimation meth-
ods even with infinite amount of data. Further more, the validity of
non-uniform error cost can be justified in many speech recognition
tasks. We present corresponding non-uniform error training crite-
ria according to different training scenarios in the context of ASR
applications.
This paper is organized as follows. In Section 2, we discuss

Bayes’ original analysis of optimal decision as applied to general
cases involving non-uniform error cost. Also, we point out that
the method of MCE, which departs from the conventional paradigm
of distribution estimation for pattern recognition, provides a fitting
framework for incorporation of non-uniform error cost functions. In
Section 3, we apply our framework to the ASR applications and dis-
cuss some training scenarios. We demonstrate the results of our new
methodology through several general pattern recognition and speech
recognition tasks in Section 4. Conclusions and future work are pro-
vided in Section 5.

2. DECISION POLICYWITH NON-UNIFORM ERROR
COST ANDWEIGHTEDMCEMETHOD

2.1. Minimum Risk (MR) rule

The conditional risk of (1) and the expected loss of (2) are general
expressions of the system performance without imposing any partic-
ular conditions on the error cost function εij . Again, since p(X) is
non-negative,

minL = min
C

E{R(C(X)|X)} =

Z
min

C
R(C(X)|X)p(X)dX

(5)
To achieve the minimum risk, the recognizer function must imple-
ment the following policy,

C(X) = arg min
Ci

R(Ci|X) = arg min
Ci

MX
j=1

εijP (Cj |X) (6)

We call this the minimum risk (MR) rule. For a non-uniform error
cost function, we generally require that εij = 0 for i = j and εij ≥
0 for i �= j.

2.2. Weighted MCE with Non-Uniform Error Cost

The incorporation of a class-dependent non-uniform error cost func-
tion incurs two factors that require careful consideration. First, the
system needs to implement the MR rule defined in (6). We need to
embed this decision rule (or decision operation) in a functional form
so that optimization can be performed to obtain the values of the
system parameter set. Second, as the overall system performance is
defined over a non-uniform error cost function, the particular deci-
sion for each of the training token becomes an integral part of the
performance measure and has to be included in the objective func-
tion for optimization. The second factor is unique because once a
decision is rendered by the recognizer, what matters is not only if
the decision is right or wrong but how much error cost the decision
actually incurs. We shall see how these factors are taken into account
in the proposed schemes for non-uniform error cost minimization.
Note that the execution of (6) obviously requires the knowl-

edge of the a posteriori probability P (Cj |X),∀j ∈ IM . In real

applications, the a posteriori distribution needs to be learned with
class identity labels, as part of the conventional design paradigm for
a recognition system. The estimated posterior distribution (for all
classes and over the entire space of X) may have to be substantially
more accurate in the non-uniform cost case than in the uniform case,
because one may argue that the rank order of posterior probabilities
(as required in uniform cost situations) is likely to be less sensitive
to small deviations than the quantities themselves (which is required
in the non-uniform cost). Therefore, to implement the MR decision
rule in practice, we introduce the idea of the discriminant function
as follows.

Let gi(X; Λ) ≥ 0 be a discriminant function for the ith class,
i = 1, 2, . . . , M where Λ is the parameter set that defines the func-
tion. The recognition decision is reached according to

C(X) = arg max
i

gi(X; Λ) (7)

That is, the recognizer chooses the class that leads to the largest value
among all discriminants evaluated on X. Obviously, If the true a
posteriori probability is available, a monotonically decreasing func-
tion of the conditional risk of (1) (to switchmin intomax operation)
would be appropriate. For example,

gi(X; Λ) = exp{−R(Ci|X)} = exp

8<
:−

X
j∈IM

εijP (Cj |X)

9=
;
(8)

However, when the above approximation of the a posteriori distri-
bution can not be ensured, one may opt for other discriminant func-
tions based on some reasonable convention. One example is the use
of hidden Markov models (HMM) as the discriminant functions in
ASR applications.

To accumulate the error cost of each training token into the ob-
jective function, the expected system loss of (2) needs to be ex-
pressed in terms of the empirical loss (yet to be defined) with the
decision rule embedded in it. For clarity, let iX = C(X) be the
identity index as decided by the recognizer and jX be the true iden-
tity index of X. Also, Ω = {X(n)}N

n=1 is the set of training tokens.
A single token realized cost is defined as

liX
(X; Λ) = εiX jX

(9)

Therefore if the empirical system loss is defined over the realized
token-based costs (rather than the expected cost on realized tokens),
an alternative non-uniform cost will result:

L =
1

N

X
X∈Ω

εiX jX
→

Z
εiX jX

p(X)dX (10)

Suppose that each class is prescribed a discriminant function gj(X; Λ), ∀j.
Define the recognizer function as

C(X) = iX = arg max
i

gi(X; Λ) (11)

The empirical system loss of (10) based on Ω is then

L =
1

N

X
X∈Ω

X
i∈IM

X
j∈IM

εij1[jX = j]1{i = arg max
k

gk(X; Λ)}

(12)
Note that in the above the indicator function 1[jX = j] = 1[X ∈
Cj ].
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The remaining challenge in designing a discriminative training
algorithm with non-uniform error cost is to turn the objective func-
tion, L in (12), into an appropriate smooth function of the parameter
so as to allow numeric optimization. Consider

L =
X

j∈IM

Lj (13)

and

Lj =
1

N

X
X∈Ω

0
@ X

i∈IM

εij1

n
i = arg max

k
gk(X; Λ)

o1
A 1[X ∈ Cj ]

(14)
That is, Lj is the empirical error cost collected over all training to-
kens in Ω with jX = j. The approximation then needs to be made
to the summands. This can be accomplished by

X
i∈IM

εij1{i = arg max
k

gk(X; Λ)} ≈
X

i∈IM

εij
gi(X; Λ)

G(X; Λ)
(15)

where

G(X; Λ) =

2
4 X

i∈IM

gη
i (X; Λ)

3
5

1/η

(16)

Note that as η → ∞,

gi(X; Λ)

G(X; Λ)
≈

j
1, G(X; Λ) = maxk gk(X; Λ)
0, otherwise

(17)

Finally, the smoothed empirical system cost is

L ≈
1

N

X
X∈Ω

X
j∈IM

0
@ X

i∈IM

εij
gi(X; Λ)

G(X; Λ)

1
A 1[X ∈ Cj ] (18)

which is a continuous function of the parameter set Λ. We name Eq.
(18) as the objective function of the weighted MCE method. The
parameter setΛ can be updated using gradient descent methods (e.g.,
generalized probabilistic descent method (GPD)) [2][3]. We have
derived updating equations for Gaussian mixture models (GMM) in
[4].

3. NON-UNIFORM ERROR CRITERIA FOR SPEECH
RECOGNITION

Speech recognition is an important category of pattern recognition
applications. In brief, there are two training scenarios in ASR. In
the first case, the training and recognition decisions are on the same
linguistic level of the performance measure. For example, the acous-
tic model is trained on the phone level and the evaluation metric is
the weighted phone error rate (PER). In this case, the loss of wrong
recognition decisions represents the recognizer’s performance di-
rectly. We call this scenario intra-level training. The second and
the most common circumstance in practice is inter-level training in
which the training and recognition decisions are not on the same lin-
guistic level as the performance measure. For example, the training
and the recognition are on the phone level but the system evaluation
measure is the weighted word error rate (WER). In this case, the
system performance is not evaluated by the recognition error loss.
Hence, minimizing the cost of wrong recognition decisions does not
directly optimize the recognizer’s performance in terms of the eval-
uation measure. To alleviate this inconsistency, the error weighting
strategy should be built in a cross-level fashion.

3.1. Error Weighting for Intra-Level Training

Assume that the training is on the phone level and the evaluation
measure is the weighted phone error rate (PER). The phone sequence
PH = (ph1, ph2, . . . , phLk

) is the label of the kth training token

in a training set with totally K tokens. Xk = {Xk,lk}
Lk

lk
is the

kth token that is segmented into Lk segments corresponding to the
phone sequence. The objective function for the weighted MCE in
this case could be written as

L′

W−MCE =
X

k

LkX
lk=1

εij
gi(X; Λ)

G(X; Λ)
1(Xk,lk ∈ Cj) (19)

3.2. Error Weighting for Inter-Level Training

Assume that in this case, the training is on the phone model and
the performance metric is the weighted word error rate. The first
weighting mechanism we are discussing is the user-defined weight-
ing. Let the word sequence W = (w1, w2, . . . , wLk

) be the la-
bel of the kth training token in a training set with totally K tokens.

Each word wlk contains a phone sequence as ph1
lk

, ph2
lk

, . . . , ph
Nk

lk
.

Xk = {Xk,lk,nk
}

Lk

lk
is the kth token that is segmented into Lk seg-

ments corresponding to the word sequence. Hence, the weighted
MCE for the inter-level training can be written as:

L′′

W−MCE =
X

k

LkX
lk=1

NkX
nk=1

εij
gi(X; Λ)

G(X; Λ)
1(Xk,lk,nk

∈ Cj)E(wlk)

(20)
where E(wlk) is the word-level (or higher level) cost imposed on
word wlk . This objective function utilizes the class-dependent error
cost from the higher level (e.g., word level) to control the optimiza-
tion of the parameters on the lower level (e.g., phone level).

4. EXPERIMENTS

We present two groups of experiments to show the effectiveness of
our framework. We first conduct computer simulations to demon-
strate the effectiveness of our method in the ideal situation, in which
we know the analytical form of the data distribution so that we can
model the scoring function gi(X; Λ) as a function of the non-uniform
error cost as of Eq. (8). We then present speech recognition exper-
iments, in which real data distribution is unknown and the scoring
function gi(X; Λ) is assumed to be an HMM model. Because of the
limited space, we only display the inter-level training experiments.

4.1. Experiments on General Pattern Recognition

In our experiments, there are 3 classes and the data of each class is 2-
dimensional and generated by a GMM with 4 mixture components.
We generate 9 data sets for each of the 3 classes using 4-mixture
GMMs, which correspond to the data set size from 128 (which is
27) to 32768 (which is 215). Fig.1 shows the GMM model contours
with 1024 data samples. The entire data set into the training and test
set by a ratio of 80/20 and the class prior probabilities are assumed
to be 0.2, 0.3, and 0.5 respectively. The baseline models are initial-
ized using the EM algorithm [1]. The scoring function gi(X; Λ) is
modeled as of Eq.(8) and the detailed parameter updating equations
are derived in [4].
Fig.2 compares the performance in terms of the empirical error

cost of (13) computed using a non-uniform cost function between the
baseline and the MCE-trained models. The performance comparison
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Fig. 1. GMM models contours with 1024 data samples.

assessed on the training set is plotted in the upper panel and that on
the test set is in the bottom panel. In each panel, the horizontal axis
represents the number of training data samples. The square sign,
the “+” sign and the star sign denote the baseline, the model trained
by the conventional MCE method with a uniform cost function, and
the model trained by the weighted MCE method with a non-uniform
cost function, respectively. The non-uniform error cost function is
assumed to be

[εij ] =

2
4

0 7 3
2 0 8
4 6 0

3
5

We can observe that since the performance measure is the non-uniform
error cost, the model trained by the MCE method with the non-
uniform cost matrix (i.e., a matched-objective condition) shows the
best performance in most operating points due to the consistency
between the training objective and the performance measure.
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(a) Non-Uniform Error Cost for the Training Set
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Fig. 2. Non-uniform error cost for training and test set when model-
ing g(X; Λ) as a function of the non-uniform error cost

4.2. Experiments on Speech Recognition

The weighted MCE method in the inter-level training scenario is in-
vestigated on the TIDIGITS database [5]. The main challenge in this
scenario is to adjust the cost of phone errors so that the word error
rate is optimized. The baseline is built based on 22 HMM models
for all phonemes in digit words 0-9 plus “oh” using EM algorithm.
Each model has 3 states and each state contains 32 Gaussian mix-
tures. The training features are 12MFCCs + Δ + Δ2 + energy. We
use a non-uniform error cost function that is created through a trans-
formation of the phoneme confusion matrix.
In Table 1, we compare the performance of the MCE method

using uniform and non-uniform error cost matrices for inter-level
training. We can see that for both the word error rate and sentence
error rate, the weighted MCE method achieves better performance.

Table 1. Performance comparison between the conventional MCE
training and the weighted MCE method with the non-uniform error
cost matrix

Word Error Rate Sentence Error Rate

Baseline 1.53 4.64
MCE 1.40 4.36

Weighted MCE 1.32 3.97

5. CONCLUSIONS AND FUTUREWORK

In this paper, we start from the Bayes decision theory and derive a
framework to solve the problem of the optimal classifier design with
non-uniform error cost assessments. We apply our method on both
general pattern recognition problems and speech recognition tasks.
Experiments show that our method is effective in minimizing non-
uniform error cost according to system requirements.
In the future, more details with regard to the non-uniform error

criteria will be discussed upon more complex tasks. Techniques of
building efficient non-uniform error cost functions also need further
exploration.
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