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ABSTRACT

Noisy or distorted video/audio training sets represent constant

challenges in automated identification and verification tasks.

We propose the method of Mutual Interdependence Analy-

sis (MIA) to extract “mutual features” from a high dimen-

sional training set. Mutual features represent a class of ob-

jects through a unique direction in the span of the inputs that

minimizes the scatter of the projected samples of the class.

They capture invariant properties of the object class and can

therefore be used for classification. The effectiveness of our

approach is tested on real data from face and speaker recog-

nition problems. We show that “mutual faces” extracted from

the Yale database are illumination invariant, and obtain iden-

tification error rates of 2.2% in leave-one-out tests for differ-

ently illuminated images. Also, “mutual speaker signatures”

for text independent speaker verification achieve state-of-the-

art equal error rates of 6.8% on the NTIMIT database.

Index Terms— Algorithms, Signal Processing, Pattern

Classification, Signal Analysis, Speaker/Face Recognition.

1. INTRODUCTION

Principal Component Analysis (PCA) is a ubiquitous fea-

ture extraction and dimensionality reduction method [1], [2].

Principal components/functions are given by the directions of

maximum variance in the data. The directions of minimum

variance, or minor components, have received much less at-

tention in the literature. However, Minor Component Analy-

sis (MCA) is important in certain signal processing applica-

tions e.g. spectral estimation, curve and hyper-surface fitting,

cognitive perception and computer vision [3].

Both, PCA and MCA principles are successfully utilized

in classification problems. On the one hand, PCA can find the

directions of maximum scatter between classes representing

effective contrasts for classification. On the other hand, MCA

can extract invariant representations of each class by find-
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ing a direction that minimizes the intra-class scatter. Utiliz-

ing Bayesian statistics with Gaussian priors of equal covari-

ance, one can derive the Fisher linear discriminant analysis

(LDA) [4]. This classical technique finds a trade-off between

minimizing intra-class scatter and maximizing between-class

scatter. Thus, the cost function of LDA can be defined by a

combination of the PCA and MCA principles.

Data-dependent transformations (like PCA, independent

component analysis or ICA, MCA), in contrast to general-

purpose transformations (Fourier, wavelet analysis), can ex-

tract powerful representations to reason about new inputs with

similar underlying structure to the training data [5]. However,

when attempting to extract interdependencies in a dataset,

most methods lose information through the common prepro-

cessing step of mean subtraction. High-dimensional input

samples are generally linearly independent, thus mean sub-

traction can reduce the span of the data and lose informa-

tion.We would like to extract invariants/features through data-

dependent transformations of these raw inputs.

In this paper, we propose Mutual Interdependence Analy-

sis (MIA) [6] for robust feature extraction. In section 2 we de-

fine the MIA problem, state its solution and discuss its prop-

erties. Sections 3 and 4 show the application of MIA to face

identification and text-independent speaker recognition prob-

lems respectively. Our approach is effective in learning “mu-

tual faces” and “mutual speaker signatures” from the data and

achieves competitive error rates on challenging data.

2. MUTUAL INTERDEPENDENCE ANALYSIS (MIA)

Throughout the paper, we use xi(tj), with i = 1, . . . , N and

j = 1, . . . , D, to denote N real-valued inputs of dimension-

ality D. In our case, D is typically much larger than N . Also,

we denote X to be the matrix whose columns are xi. For ex-

ample, xi is an image representing the face or a speech seg-

ment from one person p, and X(p) ⊆ X represents the set of

such samples for the person. In that case X denotes a con-

catenation of the matrices X(p) of all classes p in a database.
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Consider the scatter of the data:

S̃(X|w) =
N∑

i=1

(
wT · xi − wT · μ)2

= wT · S · w

where μ = 1
N

∑N
i=1 xi is the D-dimensional sample mean,

and S is the scatter matrix of the data.

The basic MIA idea is to look for invariant input data

features (i.e. directions to project data) in the data-dependent

space
{∑N

k=1 ck · xk : c ∈ IRN
}

. For any input set X(p), the

MIA problem can be formulated as the search for an optimal

direction w(p)
MIA that solves the constrained optimization:

ŵ(p)
MIA = arg min

w,‖w‖=1,w=
∑N

k=1
ck·xk

S̃(X(p)|w) . (1)

Note the differences from formulations of the classical prob-

lems PCA, MCA and LDA:

ŵPCA = arg max
w,‖w‖=1

S̃(X|w)

ŵ(p)
MCA = arg min

w,‖w‖=1,S̃(X(p)|w)>0

S̃(X(p)|w)

ŵLDA = arg max
w,‖w‖=1

S̃(X|w)∑
p S̃(X(p)|w)

Our optimization problem is unique due to its constrained for-

mulation. We will show that ŵMIA “optimally” represents the

data samples for a class as one aggregate sample.

2.1. Solution to MIA

We sketch an equivalent formulation of the MIA problem and

its solution. Let us denote yi = xi − μ. If for simplicity

X(p) = X, (1) can also be written as:

ŵMIA = arg min
w,‖w‖=1,w=

∑N

k=1
ck·xk

∥∥wT · Y∥∥2
, (2)

where Y = X − μ · 1T and μ = 1
N X · 1. It follows that

Y = X · P with P = I − 1
N 1. Obviously,

∑N
i=1 yi = 0.

Thus, the nullspace NULL(y1, . . . ,yN ) is non trivial. All

vectors w ∈ NULL(y1, . . . ,yN ) will minimize S̃(X|w).
The following theorem shows that the problem given by (2)

has exactly one solution.

Theorem 1 Assume x1, . . . ,xN are linearly independent.
Then, there exists w �= 0 in NULL(y1, . . . ,yN ) such that
w is in the span of the inputs xi, i = 1, . . . , N .

The proof of this theorem as well as the derivation of the

solution ŵMIA = ζ X · (XT · X)−1 · 1, with ζ an arbitrary

scalar, is given in [6]. It follows that ŵMIA
‖ŵMIA‖ is a unique solu-

tion to (2). It can be easily seen that common, additive com-

ponents in all data samples will not affect the scatter matrix S

(a) Yale face database class (b) Mutual image information

Fig. 1. (a) Image set of one individual in the Yale database.

The set contains 11 images of the person taken with various

facial expressions and illuminations, with or without glasses.

(b) MIA result, or mutual face estimated from all images of

the set.

and therefore will not affect the MIA solution. It turns out that

the MIA result ŵMIA is equally correlated with all inputs [6].

Should input data be seen as a linear combination of a hidden,

invariant part w and variant components fi orthogonal to w,

xi = w + fi, then MIA captures the invariant part w. Hence,

the MIA result represents invariant information present in all

samples as one aggregate sample.

3. APPLICATION TO FACE RECOGNITION

State-of-the-art face recognition approaches suffer from a

number of outstanding problems, including sensitivity to mul-

tiple illumination sources and diffuse light conditions. In this

section, we show that MIA can be used to extract illumination

invariant “mutual faces” for face recognition.

We tested the MIA-based mutual face approach on the

Yale face database [7]. The image set of one individual is

given, for illustration, in Fig. 1(a). As discussed in [8], the

reflected light intensity I of each image pixel can be modeled

as a sum of an ambient light component and directional light

source reflections. Let Ia and Ip be the ambient/directional

light source intensities. Also, let ka, kd, N̄ and L̄ be ambi-

ent/diffuse reflection coefficients, surface normal of the ob-

ject, and the direction of the light source respectively. Hence,

I = Iaka + Ipkd(N̄ · L̄) .

More complex illumination models including multiple direc-

tional light sources can be captured by the additive super-

position of the ambient and reflective components for each

light source [8] (see Equation 16.20).

We claim that MIA can extract an illumination-invariant

mutual image, perhaps including Iaka, from a set of aligned

images of the same object (face) under various illumination

conditions.
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(a) Eigenface input (b) Fisherface input (c) MIA input

Fig. 2. Examples of training instances used in (a) Eigenfaces,

(b) Fisherfaces and (c) MIA: (a) Mean-subtracted face ob-

tained as difference between a face instance and the mean of

all images in the database. (b) Mean-subtracted face obtained

as difference between a face instance and the mean image of

all instances for the same person. (c) “Centered” face image,

obtained by subtraction of the mean column value from each

image column.

3.1. Face recognition using mutual faces

In the following, mutual faces were used in a simple

appearance-based face recognition experiment. Prominent

methods of this widely researched area include the Eigen-

face [9] and Fisherface [7] approaches. Most approaches

use mean image subtraction for preprocessing, which reduces

the image space dimensionality compared to the original im-

age set. Therefore, this step cancels potentially useful im-

age information. In contrast, MIA uses centered images

(xT
i · 1 = 0 ∀i) as inputs. Figure 2 illustrates the difference

between a mean-face-subtracted input instance in the Eigen-

face/Fisherface approach and the centered MIA input.

The procedure to extract the mutual face from the face set

of one person can be defined as follows: First, images are

2D Fourier transformed. Second, each row of the images is

centered and windowed. Thereafter, MIA is performed sep-

arately on each set of rows. After normalizing and reassem-

bling the rows the procedure is repeated with the columns of

the original images. Thus, two mutual faces are generated,

added, and the result is transformed through the 2D inverse

FFT. Face identification is performed using cropped and cen-

tered images. The measure of similarity between a test image

and the MIA representation of a person is the mean cosine dis-

tance of the corresponding centered lines and columns. The

resulting scores s1 and s2 are fused using s =
√

s1
2 + s2

2.

Mutual faces are learned on all but a single test image

using the “leave-one-out” method discussed in [10]. The left-

out image is one of the three illumination variant cases of

the Yale database (centered light, left light and right light).

This approach leads to an identification error rate (IER) of

2.2%. Overall, in exhaustive leave-one-out tests, the mutual

face method results in an error rate of 7.4%. Recognition per-

formance for unknown illumination is comparable or beyond

Method Evaluation IER [%] Comments

MIA leave-one-out
7.4 Full face test
2.2 Only illumination

Fisherface [7] leave-one-out
7.7 Cropped face test
0.6 Full face test

Eigenface [7] leave-one-out
24.4 Cropped face test
19.4 Full face test

Kernel PCA [11] leave-one-out 26.0 Cropped face test

Minimax Probability
k-fold cross validation

21.2 Cropped face test
Machine [12] 10.1 Without illumination

Table 1. Comparison of the identification error rate (IER) of

MIA with other methods using the Yale database. Full faces

include some background compared to cropped images.

various reported results obtained with similar data (Table 1).

The MIA approach can be used to enhance both feature- and

appearance-based methods, only requires minimal training,

and appears insensitive to multiple illumination sources and

diffuse light conditions. A complete analysis will be reported

separately.

4. APPLICATION TO TEXT-INDEPENDENT
SPEAKER VERIFICATION

In this section, we apply MIA to the problem of extracting sig-

natures from speech data for the purpose of text-independent

speaker verification. This problem is challenging when we

need to verify the identity of a person but can not control

the way data are acquired (e.g. recording equipment, environ-

ment, etc.). For comparability with [13], we used the “test”

portion of the NTIMIT database [14]. This database contains

noisy data from 168 speakers (112 males and 56 females) that

we partitioned 50-50 for training and testing. The data were

preprocessed by silence removal, low-pass filtering and nor-

malization of each recording.

A speech signal can be modeled as an excitation that is

convolved with a linear dynamic filter which represents the

vocal tract. The excitation signal can be modeled for voiced

speech as a periodic signal and for unvoiced speech as ran-

dom noise. It is common to analyze the voiced and unvoiced

speech separately [15]. In this paper, only the voiced speech is

used for speaker recognition. Let E(p), H(p) and V(p) be the

spectral representations of the excitation, vocal tract filter and

the voiced signal parts of person p respectively. Moreover, let

M represent speaker-independent signal parts in the spectral

domain (e.g. recording equipment, environment, etc.). There-

fore, the data can be modeled as: V(p) = E(p) ·H(p) ·M. By

cepstral deconvolution, the model is represented as a linear

combination of its basis functions:

x(p)
i = log V(p)

i = log E(p)
i + log H(p) + log Mi

This additive model suggests that we could use MIA to extract

a function that represents the speaker’s signature log H(p).

In practice, we consider high dimensionality inputs: x(p)
i are

speech segments of one second, in order to achieve high spec-

tral accuracy.
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Method Identification [%] ERR [%] Database Comments

MIA 56 6.8 NTIMIT(168)
50-50 partitioning for
training and testing

GMM [13] 69 7.2 NTIMIT(168)
Similar/dissimilar
speakers excluded

GMM [16] N/A 9.6 NTIMIT(168)

GMM [17] N/A
12.4 NTIMIT(168)

8.8 NTIMIT(630)

Phoneme
N/A 15.7 NTIMIT(438)

Only male speakers
GMM [18] used

Table 2. Comparison of the MIA results with Gaussian Mix-

ture Model (GMM) results using NTIMIT. Note that MIA

achieves a competitive EER while scoring below “state-of-

the-art” identification rates.
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Fig. 3. Results of MIA-based text independent speaker veri-

fication on NTIMIT. (a) Matrix of similarity scores between

different signatures. Bright gray stands for high and dark gray

for low similarity between signatures. (b) False rejection (FR)

versus false acceptance (FA) rate.

4.1. MIA-based text-independent speaker verification

The data are partitioned with non-overlapping, nearly rectan-

gular window functions of one second lengths and exponen-

tial tails. The input functions are centered. For each person,

we extract a voice signature w(p)
MIA. Thereafter, each extracted

signature is down-sampled to 128 points. The mean signature

is subtracted from all signatures to focus on the evaluation

of differences. The Euclidean distance between the test and

training signatures is used as a measure of similarity. A ma-

trix that represents the similarities between all signatures in

the database is illustrated in Fig. 3(a).

The false acceptance rate (FA) versus false rejection rate

(FR) is computed in an exhaustive test. For various thresh-

olds, their values are illustrated in Fig. 3(b). The equal er-

ror rate (EER), where FA equals FR, is used to compare re-

sults in Table 2. The EER of this MIA-based text independent

speaker recognition system was 6.8%. The best speaker veri-

fication results on the NTIMIT database that we are aware of

were published in [13] for a similar experiment. The method

uses Gaussian mixture speaker models and results in EER’s

between 7.19% and 8.68%. Note that, in contrast to the Gaus-

sian mixture model, MIA extracts a signature of 128 samples

length per speaker.

5. CONCLUSION

We propose Mutual Interdependence Analysis (MIA) for ro-

bust extraction of “mutual features”. We showed that MIA

has a unique solution utilizing its high-dimensional, linearly-

independent inputs as basis. The MIA result is equally cor-

related with all inputs, thus representing the inherent, hidden

invariance in the dataset. We demonstrate the effective ap-

plication of MIA for face identification and text independent

speaker verification problems with competitive error rates on

challenging data. Current work is investigating further the

precise advantages and disadvantages of MIA relative to com-

petitor methods such as PCA, MCA and canonical correlation

analysis.
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