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ABSTRACT
In real time communications, system performance and computa-
tional complexities play key roles. Reducing the computational
load and providing accurate performances are the main challenges
in present systems. In this paper, a Blind Equalization (BE) with
affordable complexity and good performance in large constellation
MIMO systems is proposed. Saving computational cost happens
both in the signal separation part and in signal detection part. First,
based on Binary Phase Shift Keying (BPSK) or Quadrature am-
plitude modulation (QAM) signal characteristics, an efficient and
simple nonlinear function for the Independent Component Analysis
(ICA) is introduced. Second, using the idea of the sphere decod-
ing (SD), we choose the soft information of channels smartly and
overcome the so-called curse of dimensionality of the Expectation
Maximization (EM) algorithm to enhance the final results.

Index Terms— Noisy ICA, BE, MIMO, EM

1. INTRODUCTION

In digital wireless communications, distortions introduced by fading
and multipath propagation cause intersymbol interference (ISI) in
received signals, producing errors in signal detection. Many equal-
izers are designed to compensate for the channel effects. As opposed
to traditional techniques, blind equalization (BE) methods do not re-
quire training or pilot sequences, can utilise the bandwidth resources
efficiently and can perform in a wider range of communication envi-
ronments. So blind equalization has attracted a great deal of interest
in the recent years.

Independent component analysis (ICA) [1] as a statistical tech-
nique, has received a lot of attention in the signal processing com-
munity. Using only the independence of the original signals, ICA
identifies an unknown channel or mixing matrix first and then esti-
mates source signals. It can usually estimate the source signals up to
certain indeterminacies: arbitrary scaling and permutation. It is suit-
able for multiple input multiple output systems (MIMO) systems.
Our work is concentrated on general complex ICA models with ad-
ditive Gaussian noise.

Y = HS + N (1)

Where Y ∈ Cn×k is the matrix containing observed signals from
the sensors, and S ∈ Cn×k is the complex discrete source signals.
N ∈ Cn×k is the matrix of the noise with covariance, Σ, which is
uncorrelated with the source signals. H ∈ Cn×n is an unknown
linear square matrix whose elements are drawn independently from
a Rayleigh distribution and we assume that it is invertible. Note that,

H is instantaneous narrow band model but we can not guarantee it
is orthogonal.

ICA can blindly equalize MIMO systems [2]; however, the per-
formance may not be good enough for communication applications
when we consider common BER demands in wireless communica-
tion systems. In this paper, we propose a quasi-maximum likelihood
(ML) method which combines the ICA and EM algorithms to im-
plement blind equalization in digital MIMO systems. Especially we
emphasize the case of large and dense constellation modulations.
Section II introduces a simple nonlinear function for BE. To further
refine the BER performance, a simple SD-EM solution is presented
in section III and IV. Section V shows the simulation results and
conclusions are given in section VI.

2. THRESHOLD NONLINEAR FUNCTIONS IN QAM
MODULATION

In blind signal separation systems, nonlinear functions can reveal the
high order correlation among the signals. Such high order correla-
tions indicate mutual dependence, which then forms an error signal
to drive the output signals to a state of higher independence. These
high order statistics (HOS) are produced by the nonlinear functions
implicitly. An important point is that good nonlinear functions are
essentially defined by the pdf of the original source signals. So,
when using entropy/nongaussianity as the cost function, under digi-
tal QAM modulation schemes, the optimal nonlinearity for complex
valued data is

J(W ) = E{log pQAM (W H
X)} (2)

where W is the unmixing matrix and X is the whitened received
signals, which satisfies E{XXH} = I . PQAM : R × R → R is
the joint pdf of the QAM source with added noise. The signal model
assumes the existence of noise, hence with the addition of complex
white Gaussian noise to the sources, a mixture of Gaussian (MoG)
kernels is appropriate. Then the model for the pdf in equation (2) for
an M-QAM source with the Gaussian mixture model is

pQAM (y) =
1

M2πσ2

MX
i=1

e
( −1

2πσ2
((yR

−AR
i )2+(yI

−AI
i )2)) (3)

where σ2 is the variance of the Gaussian mixture. Ai ∈ A is the
set of complex points in the QAM constellation. Note that for con-
venience we are treating the noise as being isotropic in the source
domain, as was also done in [3]. We note, however the better model
is isotropic noise in the sensing domain, as in (1).
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When the size of A increases, the computation load becomes
very large and it is prohibitive for real time operation. To reduce this
unaffordable complexity, we use a very simple nonlinear function to
approximate this pdf [4]. For QAM signals, the real parts and the
imaginary parts of the signal are statistically independent. So we
can apply the same nonlinearity independently to the real and the
imaginary parts of the signal. Figure 1 illustrates real part of MoG
QAM16 pdf and its approximation and the corresponding nonlinear
function based on this approximation.
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Fig. 1: Nonlinear approximation of MoG

The Split Nonlinear Threshold Function is given by

g(y) =

8>>><
>>>:

0, |yR| < ν; |yI | < ν

α[(yR − sign(yR)ν)
+j(yI − sign(yI)ν)], |yR| ≥ ν; |yI | ≥ ν
α(yR − sign(yR)ν), |yR| ≥ ν; |yI | < ν

jα(yI − sign(yI)ν), |yR| < ν; |yI | ≥ ν

where ν is the threshold and α is the slope of nonlinearity which ef-
fects the convergence ability and stability. We set ν = 1 andα = 0.5
in the following simulations. The key advantages of this nonlinearity
over the a direct use of (3) are:

• Simplicity - The nonlinearity only requires a small number of
simple bit-level sign operations which can take the place of a
large amount of multiply and add operations.

• Unimodel density model - It avoids potential problems of in-
troducing spurious local mimima.

• Flexible - The single nonlinear activate function is applicable
to all QAM modulation schemes irrespective of constellation
size.

Applying this nonlinearity into a fast complex fixed-point algorithm
[3], we get the following update,

w
n+1 = −

1

2
E{xg

∗(y)}+ E{g
′

a(y)}wn + E{xx
T
g
′

b(y)}(wn)∗.

(4)
The split threshold nonlinear update equations are given by

g(y) =
1

2
α

n
gν(yR)[yR − sign(yR)ν] +

jgν(yI)[yI − sign(yI)ν]
o

(5)

g
′

a(y) =
1

4
α[gν(yR) + gν(yI)] (6)

g
′

b(y) =
1

4
α[gν(yR) − gν(yI)]. (7)

Here, we define the nonlinear select function, gν(x), as

gν(x) =

j
0, |x| < ν

1, |x| ≥ ν.

Excellent simulation results based on this nonlinearity are shown in
section V. Note that, since the nonlinearity above correctly treats the
complex QAM signals as I-Q independent, there is no the phase am-
biguity. Further improvements based on this property can be carried
out for advanced refinements.

3. EM ALGORITHM AND ITS LIMITATIONS

The EM algorithm [5], can be used as a maximum likelihood esti-
mator in the situation of incomplete data. The EM updates are ana-
lytically simple and numerically stable for distributions that belong
to the exponential family, such as Gaussian. Considering model (1)
again, we get a Gaussian observation model:

p(Y |S, H) =
1

(2π|Σ|)N
exp[−Tr(Y − HS)HΣ−1(Y − HS)].

(8)
We assume that the noise covariance Σ can be estimated, and focus
on estimating the channel parameter H. We can write the p(Y ) in
terms of the hidden variables S. The parameters are estimated by
maximizing the log likelihood. EMs principle is quite simple; per-
form two steps until convergence: the E-step is the computation of
the conditional expectation of the complete likelihood, and the M-
step is the maximization of this function.

E − step : Compute Q(H,Hk) = E{log p(S|Y, H)} (9)

M − step : Find Hk+1 = Argmax
H

Q(H,Hk) (10)

In this case, the solution is given [2],

H = 〈Y S
H〉〈SS

H〉−1 (11)

where 〈·〉 denotes average with respect to the source posterior
p(S|Y ). The E-step comes from formula (9), and formula (11) is
the solution of M-step. Here we emphasize an important advan-
tage of the EM algorithm for digital communications. Generally
speaking, the EM updating equations can be expressed in a gradient
form with a specified step size controlled by the noise covariance.
However, in contrast to the convergence property in the continuous
source domains, for discrete sources, the EM algorithm exhibits
approximate Newton behavior and enjoys fast, typically super-linear
convergence in the neighborhood of the local minimum [2]. It guar-
antees fast convergence speed in discrete source domains. Although
the EM algorithm has gained popularity in mixture analysis, it has
several limitations:

Limitation 1: The EM algorithm is very sensitive to its initial values.
Limitation 2: The computation cost is exponential in the number of
sources.

The limitation 1 can be explained by the fact that the EM is a
local optimization method only [6]. We will clarify this difficulty in
detail later.

The limitation 2 is the curse of dimensionality which is a well
known problem with the EM algorithm. EM-MoG has computa-
tional cost that grows exponentially with the number of sources.
When the number of sources increase, both E-step and M-step are
difficult to solve. In digital MIMO systems, since the M-step is ob-
tained from formula (11), the problem of high dimensions is due
to the E-step, especially for large constellations. For example, in
the case of 4 transmitters and QAM16 signals, there are 164 =
65536 different configurations for the source symbols at each sam-
pling. Then, each iteration of the E-step requires the computation
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of 65536 × N conditional probabilities . Where, N is the frame
length of each transmitted block. Such problem is known to be NP-
hard. Hence, for high-rate systems with large number of antennas,
direct calculation proves to be infeasible. One solution is to use a
stochastic algorithm and replace the summations over all the possi-
ble hidden source states by Monte-Carlo integrations [7]. However,
this is still not efficient enough for real time operations. We consider
a deterministic approximation which we describe next.

4. SD-EM ALGORITHM

The following proposed algorithm overcomes the difficulty above
by using soft sphere decoding to search over only the most probable
hidden source points s ∈ Am

q that lie in a certain sphere of radius
d around the received vector, where Am

q denotes the n-dimensional
hidden source points spanned by a q-QAM constellation in each di-
mension. Thereby reducing the search space and hence the required
computational effort (see Figure 2). Clearly, the closest point inside
the sphere assuming there is one will also be the closest point for
the whole hidden source space. The summation over the points in-

  d

Fig. 2: Idea of choosing the admissible set.

side the dashed circle. Figure (2) takes the place of the summation
over the points lying in the entire source space. The points inside the
sphere are good in a likelihood sense and their collection builds up
a set called as the admissible set and its number is called the size of
the admissible set. We emphasize that closer scrutiny of this funda-
mental idea leads to two questions.

How should we choose the size of the admissible set? Obviously,
it connects with the radius d directly. If d is too large, we may obtain
too many points and the algorithm will remain exponential in size,
whereas if d is too small, we may not obtain enough points inside the
sphere for correct information to the next iteration. Then reasonable
choice of d plays an important role in the final performance and the
reduction of the complexity. Considering the possibility of points
inside the sphere is correlated to the SNR, we suggest when SNR is
large, the size of the admissible set could be small. Otherwise, it is
selected with a large value.

How can we determine which points are inside the sphere?
Sphere decoding (SD) [8] provides a constructive answer this ques-
tion. Figure (2) shows the basic principle of the SD algorithm.
The star points represent the noiseless received constellation HS

and the centre of the circle represents the actual received signal
contaminated with noise. SD calculates the closest point by:

ŜSD = Arg min
S∈Am

q

‖ Y − HS ‖2≤ d
2
. (12)

SD also can be explained as a tree search. The ML search solves this
tree search successively, its complexity depends on the size of the
tree. The SD only searches within the bracket, in the right picture in
figure 3. With the introduction above, we can specify our algorithm:

Fig. 3: Tree illustration of SD search

Algorithm 1 SD-EM algorithm
Input: received signals Y; The size of the admissible set; Iteration
number of the EM algorithm.

1. Get the initial value of the channel state information, Ĥ , by
our Threshold Nonlinear ICA algorithm or any standard ICA.

2. Using sphere decoding approach with Ĥ to construct the ad-
missible set A.

3. Updating the Ĥ by the EM algorithm only within the admis-
sible set A.

4. Go back to step 3 with new Ĥ until the iteration ends.

Output: Estimate signals Ŝ; Ĥ.

Unlike the Monte Carlo EM (MCEM) algorithm, which approx-
imates the conditional expectation in (9) by theMonte Carlo average.
The essential idea behind this algorithm is that the SD-EM approx-
imates the conditional expectation by the important samples which
lie around the received signal vector.

5. SIMULATIONS

We test the separability performance of the split threshold nonlinear
function in this paper by measuring the distance of estimation from
the true value. We define it as: P = W HHreal

ICI(P ) =
1

n

X
i

X
j

ˆ` |Pij |

max|Pij |

´2
− 1

˜
. (13)

First, we compare it with the MoG pdf proposed in [3]. For QAM16.
4 transmitters and 4 receivers MIMO system. The channel H is
a 4 × 4 complex instantaneous matrix, which is constant for each
block interval (512 symbols), and it follows a Rayleigh fading dis-
tribution. N follows the complex additive white Gaussian distribu-
tion with diagonal covariance matrix and 1000 Monte Carlo runs are
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Fig. 4: Compararison of separation quality
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taken. In this simulation, the performance of our algorithm (Thresh-
old ICA) is tested against the complex FastICA (Circular FICA) [9]
with nonlinearity G(y) = log(0.1 + |y|2). And a recent fixed-point
algorithm (Douglas FICA) proposed in [10] that showed excellent
performance for this kind of problem. Figure 4 shows that the per-
formance of the threshold nonlinear ICA is always better than other
methods and it has the same capability of the true MoG pdf over
various SNR. Sometimes, it is even better. The reason is that the
MoG pdf with small variance can introduce spurious mimima into
the cost function due to the oscillatory nature of the pdf. Artificially
increasing variance σ removes this problem. However the large vari-
ance can reduce the discrimination of the score function. Here we
emphasize that compared with the nonlinear function based on the
MoG pdf, the Hyperbolic Nonlinearities such as tanh, sinh , and
the Inverse circular Nonlinearities such as arctan, arccos, the non-
linear Threshold Function requires only a small amount of bit-level
sign operations. These always exist in real time processors such as
DSP, FPGA, and it avoids many multiply and add operations. Such
a property is important in real time systems.

In our final simulation a 4×4 system is set up: QAM16 with
512 symbols in each block, Rayleigh channel, 1000 runs. First, we
use the threshold nonlinear ICA to obtain rough estimations. Then,
using these as the initial values, we apply the SD-EM algorithm to
futher improve the estimations. Here only 3 iterations of the SD-
EM are used. The size of admissible set D is fixed at 17 which is
much smaller than the entire 65536 configuration. Figure (5) shows
substantial improvements by the SD-EM algorithm in terms of ICI.
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In communiations, the final performance is BER. In figure (6),
we compare our method with zero forcing (ZF) detector with exact
channel state information (CSI) and the threshold nonlinear ICA.
Also, we present the bound of the SD-EM method in which we ini-
tialize the SD-EM algorithm with the exact CSI. Using the same sys-
tem configuration of the last simulation, we observe that the thresh-
old nonlinearity can reach similar performance of the ZF detector
and the SD-EM algorithm improves it significantly over all SNR.

However, there still exist a performance gap between the SD-EM
algorithm and the optimal (with known CSI) ML solution in figure
(6). We present the ML solution through the bar line associated with
integer SNR. Note that the ML solution and the bound of the SD-
EM almost are coincident with each other, which indicates to us that
the performance gap is not introduced by the SD-EM algorithm. We
speculate that the gap is due to the fact that the EM gets trapped in
a local rather than global minimum, and that this occurs when the
channel is close to singular or SNR is low. The number of local min-
ima depends on the number of mixtures, the size and the dimension
of the data.
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Fig. 6: Compararison of BER

6. CONCLUSION

We present a complete scheme for blind equalization of large con-
stellation MIMO systems. We design simple approaches for the sig-
nal separation and the signal detection to reduce the computational
complexity while maintain the acceptable performance. Such an effi-
cient combination makes this feasible for a real time communication
system.
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