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ABSTRACT

In this work, we propose a scheme for joint blind source
separation (BSS) of multiple datasets using canonical corre-
lation analysis (CCA). The proposed scheme jointly extracts
sources from each dataset in the order of between-set source
correlations. We show that, when sources are uncorrelated
within each dataset and correlated across different datasets
only on corresponding indices, (i) CCA on two datasets
achieves BSS when the sources from the two datasets have
distinct between-set correlation coefficients, and (ii) CCA on
multiple datasets (M-CCA) achieves BSS with a more relaxed
condition on the between-set source correlation coefficients
compared to CCA on two datasets. We present simulation
results to demonstrate the properties of CCA and M-CCA
on joint BSS. We apply M-CCA to group functional mag-
netic resonance imaging (fMRI) data acquired from several
subjects performing a visuomotor task and obtain interesting
brain activations as well as their correlation profiles across
different subjects in the group.

Index Terms— Canonical correlation analysis, blind
source separation, magnetic resonance imaging, group analy-
sis

1. INTRODUCTION

Analysis of data from multiple subjects is an important prob-
lem in biomedical applications such as the study of brain
activations through functional magnetic resonance imaging
(fMRI) data. Group analyses mainly focus on comparing
experimental results from two contrast conditions [1],[2],
or making inference on group behavior with datasets from
multiple subjects/sessions [3],[4]. Blind source separation
methods such as ICA have proved to be a useful tool in
such analyses as they decompose the data into individual
components for exporatory data representation. Group in-
dependent component analysis (ICA) [3] performs ICA on
multiple datasets to obtain independent component estimates
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associated with each dataset. Since the estimated compo-
nents for each individual dataset are derived from a set of
common components using concatenated data, the inherent
correlation among the components may reduce the statistical
power of the post analysis such as t-test on group activation
level. Tensorial ICA [4] decomposes the group data into a set
of components consisting of a spatial activation map, a time
course, and a subject loading vector. Although tensorial ICA
is based on a three-way data model, the subject-dependent
variations are represented only by the loading vector of each
component, which limits the subject difference to a scaling
factor.
In this work, we propose to apply canonical correlation

analysis (CCA) on multiple datasets in attempt to separate
sources within each dataset as well as to provide the correla-
tion profiles of the separated sources across different datasets.
In CCA, because the demixing matrices are formed individ-
ually for each dataset, the independence of source estimates
for each dataset is better preserved. Meanwhile, the correla-
tion profiles of the estimated sources across different datasets
can be appreciated through the estimated canonical correla-
tion values.
CCA is a statistical method to summarize the correlation

structure between two multivariate data by linear transforma-
tions [5]. In more recent efforts, CCA has been applied to
solving the blind source separation (BSS) problem on a multi-
dimensional dataset, see, e.g., [6],[7]. In such methods, CCA
is used to maximize the autocorrelation structure of the re-
covered sources. The CCA approach can be posed as a gen-
eralized eigenvalue decomposition based on cross-correlation
matrices at different delay points [7]. As an eigenvalue based
method, CCA has the limitation of achieving BSS only when
the eigenvalues, i.e., the autocorrelation coefficients of the la-
tent sources, are all distinct. Methods such as utilizing the
optimal weighted sum of the cross-correlation matrices at dif-
ferent delay points have been investigated [7], [8], so as to im-
prove the solution of demixing matrix that recovers the latent
sources.
To study the utility of CCA in achieving BSS on multi-

ple datasets, we first show that CCA on two datasets can be
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posed as a special case of the generalized eigenvalue decom-
position and it achieves source separation when the correla-
tion coefficients of the sources across the two datasets are all
distinct. Secondly, we propose to apply M-CCA [9] to more
than two datasets and show that M-CCA improves the chance
to achieve source separation for multiple datasets compared
with CCA on two datasets. We give the condition under which
BSS can be achieved by M-CCA.
In the next section, we propose a generative source mix-

ture model and show that CCA on two multidimensional
datasets achieves BSS upon all distinct source correlation co-
efficients. We study conditions for M-CCA to achieve source
separation in Section 3. In Section 4, we compare experimen-
tal results of CCA and M-CCA on simulated and true fMRI
data, and we conclude our work with a discussion in the last
section.

2. CCA ON TWO DATASETS

2.1. Generative model

We assume that:
(i) Dataset xk, k = 1, 2, is a linear mixture of p sources,

sk, mixed by a nonsingular matrix,Ak, i.e.,

xk = Aksk; (1)

(ii) Sources are uncorrelated within each dataset and have
zero mean and unit variance, i.e.,

E{sksk
T } = I, k = 1, 2, (2)

where I stands for the identity matrix;
(iii) Sources from two datasets have nonzero correlation

only on their corresponding indices, and have correlation co-
efficients, r1,2(1) ≤ r1,2(2), ...,≤ r1,2(p), where r1,2(i) =
E{s1(i)s2(i)}, i.e.,

E{s1s2
T } = R1,2 (3)

whereR1,2 = diag([r1,2(1), ..., r1,2(p)]).
The condition for CCA to recover the sources in datasets

x1 and x2 is that strict inequality holds for the correlation
coefficients defined in assumption (iii).

2.2. CCA for BSS of two datasets

We show that, when data follow the model assumptions and
the separability condition given in Section 2.1 is satisfied,
CCA on x1 and x2 produces two sets of sources s1 and s2 as
the estimated canonical variates and the between-set source
correlation coefficients r1,2(i), i = 1, 2, ..., p are estimated as
the canonical correlations, i.e., CCA achieves BSS for the two
datasets.
For convenience, we whiten each dataset by principal

component analysis (PCA) and normalize the variance so that
the demixing matrix to be estimated for each whitened dataset

is an orthonormal matrix with the assumed data model. The
whitening step can always be achieved given that the true
mixing matrices are nonsingular.
MatrixBk is the whitening matrix for xk and the whitened

data are given by:
yk = Bkxk, (4)

such that

E{ykyk
T } = I, k = 1, 2. (5)

Eqs.(1), (2), and (5) together imply:

BkAkAk
T Bk

T = I, k = 1, 2. (6)

When CCA is applied to y1 and y2, the two canonical
transformation matrices,E1 andE2, are calculated by solving
the following eigenvalue decomposition problem:

E1E{y1y2
T }E{y2y1

T }E1
T = D, (7)

where D is a diagonal matrix with the estimated canonical
correlation values d1, d2, ..., dp as the diagonal entries, and

E2 = D−1/2E1E{y1y2
T }. (8)

Defining the global transformation matrix for dataset xk as

Gk = EkBkAk, k = 1, 2, (9)

and substituting (3), (6), and (9) into (7), we have:

G1R1,2G1
T = D. (10)

SinceG1 is an orthonormal matrix, we have

R1,2G1
T = G1

T D, (11)

which implies that the ith column ofG1
T , i.e., g1(i) satisfies

the following equation,

R1,2g1(i) = dig1(i). (12)

WhenR1,2 has all distinct diagonal entries, the only nontriv-
ial solution of g1(i) is that all but the ith element is nonzero,
and hence, g1(i) extracts the ith source in x1 up to a scaling
factor.
Note that since the model and the method are symmetric

for x1 and x2, the same procedure can be used to demonstrate
the source separation for x2.
It is evident from the above discussion that when the

between-set source correlation coefficients are not all dis-
tinct, eigenvalue-based CCA method fails to separate sources
whose correlation coefficients are equal. However, this prob-
lem can be significantly mitigated by incorporating more
datasets into the model, which is studied in the following
section.
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3. M-CCA ONMULTIPLE DATASETS

3.1. Generative model

We extend the generative model given in Section 2.1 by in-
cludingM datasets with each dataset, xk, k = 1, 2, ..., M fol-
lowing assumptions (i), (ii) stated in Section 2.1. We extend
assumption (iii) in Section 2.1 such that E{sksl

T } = Rk,l =
diag([rk,l(1), ...rk,l(p)]), ∀k �= l; k, l ∈ {1, 2, ..., M}, and
the correlation coefficients rk,l are in decreasing order.
The condition for M-CCA to recover the sources in the

datasets xk, k = 1, 2, ..., M is that: ∀1 ≤ i < j ≤ p, ∃l �= k
for each k ∈ {1, ..., M}, such that rk,l(i) > rk,l(j).

3.2. M-CCA for BSS of multiple datasets

Lemma 3.1 Given a group of datasets xk, k = 1, 2, ..., M
following the generative model and the separability condi-
tion stated in Section 3.1, the ith source in each dataset sk(i)
is recovered by a demixing vector ek(i), when ek(i) is cho-
sen such that the sum of the correlation coefficients rk,l(i) �
corr(eT

k (i)xk, eT
l (i)xl) for all k, l ∈ {1, 2, . . . M} is maxi-

mized, i.e., sk(i) = eT
k (i)xk where

{e1(i), e2(i), ..., eM (i)} = arg max{
M∑

k,l=1

rk,l(i)}.

Proof The proof is carried out in deflationary mode, i.e.,
the first source recovered from each dataset achieves the
largest sum of between-set correlations, then these sources
are subtracted from each dataset, or being avoided by putting
constraints on the demixing vectors recovering subsequent
sources.
In the ith stage of the deflationary procedure, we first

show that, when rk,l(i) > rk,l(j), any linear mixture of the
remaining sources in xk and xl achieves a correlation value
lower than rk,l(i).
Without loss of generality, we whiten each dataset by

PCA and normalize the variance so that the demixing matrix
to be estimated for each whitened dataset is an orthonormal
matrix. For linear mixtures s̄k = αksk(i) + βksk(j) and
s̄l = αlsl(i) + βlsl(j), i < j, {k, l} ∈ 1, 2, ..., M , their
correlation coefficient can be written as

r̄k,l � E{s̄ks̄l} = αkαlrk,l(i) + βkβlrk,l(j). (13)

Given that the datasets are whitened, all demixing vectors
have unit norm, i.e., α2

i + β2
i = 1, i = k, l. Hence, Eq.

(13) is the inner product of two vectors having the same el-
liptical trace on semimajor axis

√
rk,l(i) and semiminor axis√

rk,l(j). Therefore, we have
[√

rk,l(i)αk

√
rk,l(j)βk

] [√
rk,l(i)αl

√
rk,l(j)βl

]T

≤ rk,l(i),

where the equality holds only if αk, αl = 1 and βk, βl = 0.
The same conclusion is obtained in case of more than two

source mixtures with the elliptical analogy in higher dimen-
sion.
Secondly, under the separation condition, for each dataset

xk, there exists a dataset xl such that rk,l(i) > rk,l(j). There-

fore,
M∑

k,l=1

rk,l(i) achieves its global maximum only if the ith

source is recovered for each dataset.

The demixing matrices that maximize correlation among
the sources can be obtained by the M-CCAmethods proposed
in [9]. M-CCA is developed as an extension of CCA to max-
imize the overall correlation among sources recovered from
multiple datasets. Five criteria are defined to evaluate the
overall correlation among estimated sources. Three of them
are eigenvalue-based criteria, which maximize similarity of
rows/columns of the matrix composed by the correlation co-
efficients of sources from datasets of all pairwise combina-
tions. The other two criteria are based on, respectively, sum
and sum of square, of the correlation coefficients on sources
from datasets of all pairwise combinations.

4. SIMULATIONS

4.1. Experiment on simulated datasets

Three sets of Laplacian distributed random sources are gener-
ated to assume the specified correlation profile show in Fig. 1.
Sources in each dataset are mixed by a random square mixing
matrix.
Three experiments are performed: (i) CCA on x1 and x2,

(ii) CCA on x2 and x3, and (iii) M-CCA on x1, x2, and x3.
To implement M-CCA, one of the eigenvalue-based criterion
is used, which maximizes the largest eigenvalue of the matrix
with the between-set correlations [9]. Twenty Monte Carlo
trials are performed with different realizations of the sources
and mixing matrices in each trial.
The inter-symbol interference (ISI) is calculated based on

the product of the demixing matrix and the true mixing ma-
trix, and shown in Table 1. Mean and standard deviation of
ISI are calculated based on results from twenty trials. ISI val-
ues range from 0 (perfect separation) to 1 (uniform mixture).
It is observed that in experiment (i), sources are not well

separated due to the existence of non-distinct correlation co-
efficients between sources in x1 and x2, while source separa-
tion is achieved in experiment (ii) since source correlation co-
efficients between x2 and x3 are all distinct. In (iii), M-CCA
on three datasets successfully separates all the sources due to
the fact that, for each dataset, there exists pairwise combina-
tion(s) such that the source correlation values are all distinct,
i.e., the separation condition in Section 3.2 is satisfied.
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Fig. 1. Source correlation profiles of the three simulated datasets

Table 1. Comparison of separation performance by ISI
CCA M-CCA

(i) x1 : x2 (ii) x2 : x3 (iii) x1 : x2 : x3

G1 0.10±0.04 0.04±0.04
G2 0.09±0.03 0.04±0.04 0.04±0.03
G3 0.04±0.05 0.04±0.04

4.2. Experiment on group fMRI data from a visuomotor
task

The fMRI data is acquired from eleven subjects performing
a visuomotor task and preprocessed according to the typical
fMRI analysis procedures [10]. Each dataset is then whitened
by PCA and dimension reduced to 25 normalized principal
components.
M-CCA is applied to the eleven sets of principal com-

ponents. Two types of brain activations are estimated as the
canonical variates from each dataset: (i) the activation on the
posterior cingulate (related to the default mode), and (ii) the
occipital lobe (primary visual area), cerebellar and motor cor-
tex (motor task related) at the right and left hemisphere of
the brain. The estimated mean activation maps, mean time
courses, and estimated source correlation between subjects
are displayed in Fig. 2. By comparing the time courses of
component (i) and (ii), it is observed that the default mode
is typically showing signal decreases with respect to the task.
Based on the source correlation plots, the inter-subject vari-
ance of the visuomotor activations is estimated to be greater
than that of the default mode component.

5. DISCUSSION

In this work we study the utility of canonical correlation anal-
ysis for joint blind source separation on multiple datasets. We
pose CCA on two datasets as a generalized eigenvalue decom-
position problem and show that it achieves joint BSS when
the source correlation coefficients are all distinct. We study
the conditions for maximization of source correlation among
multiple datasets by M-CCA to achieve joint BSS. As an ad-
vantage, CCA and M-CCA also provide correlation profiles
among the estimated sources from different datasets. Further-
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Fig. 2. Estimated mean activation maps (left), mean time courses (center),
and the source correlation between subjects (right), of the default mode (top)
and right visuomotor task-related (bottom) component by M-CCA on eleven
fMRI datasets

more, because each dataset is processed individually, the ex-
tracted sources are more amenable to the post statistical anal-
ysis for making group inferences.
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