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ABSTRACT

We present a new probabilistic architecture for analyzing composite
non-negative data, called Non-negative Subspace Analysis (NSA).
The NSA model provides a framework for understanding the re-
lationships between sparse subspace and mixture model based ap-
proaches, and encompasses a range of models, including Sparse
Non-negative Matrix Factorization (SNMF) [1] and mixture-model
based analysis as special cases. We present a convenient instanti-
ation of the NSA model, and an efficient variational approximate
learning and inference algorithm that combines the advantages of
SNMF and mixture model-based approaches. Preliminary recogni-
tion results on the Pascal Speech Separation Challenge 2006 test
set [2], based on NSA separation results, are presented. The re-
sults fall short of those achieved by Algonquin [3], a state-of-the-art
mixture-model based method, but considering that NSA runs an or-
der of magnitude faster, the results are impressive. NSA outperforms
SNMF in terms of word error rate (WER) on the task by a significant
margin of over 9% absolute.

Index Terms— Non-negative Subspace Analysis (NSA), Speech
Separation, Variational Expectation-Maximization (GEM), Robust
Speech Recognition, Sparse Non-negative Matrix Factorization
(SNMF)

1. INTRODUCTION

Model-based speech separation and denoising has been a heavily re-
searched topic in robust speech recognition in recent years. A com-
mon approach is to model each source using a mixture model. In
this approach, exact inference scales exponentially with the number
of sources, because all possible mixture combinations must be ex-
plored.
Iterative approximate inference schemes, such as variational meth-
ods [3], have been applied to make inference linear rather than ex-
ponential in the number sources for mixture-based models, and pro-
duced some very impressive results. Such approaches are in practice
still computationally expensive, however, because the required com-
putation per iteration and number of required iterations is generally
quite significant. Approximate source and interaction models, in-
cluding band quantized models [4] and the ”max-model” in the log
spectrum [5], can be used to greatly reduce the amount of computa-
tion per state combination, but exact inference still scales exponen-
tially with the number of sources.
Subspace-based approaches such as non-negative matrix factoriza-
tion [6, 1, 7], on the other hand, are extremely computationally
efficient. Source subspaces can be learned on separated data and
concatenated to analyze composite data without explicitly consider-
ing the possible ”state combinations” of the sources. Subspace and
sparse analysis representations are a hot topic in signal processing

right now, but despite this, relatively little work exists that directly
compares the speed and performance of sparse subspace and mixture
model based methods or explores their relationship.
In this paper, we present a new probabilistic architecture for ana-
lyzing composite non-negative data, called Non-negative Subspace
Analysis (NSA). NSA provides a framework for understanding the
relationships between sparse subspace and mixture model based ap-
proaches, and encompasses a range of models, including Sparse
Non-negative Matrix Factorization (SNMF) [1] and mixture-model
based analysis as special cases. We present a convenient instanti-
ation of the NSA model, and an efficient variational approximate
learning and inference algorithm that combines some of the advan-
tages of NMF and mixture model-based approaches.
Preliminary speech recognition results on the Pascal Speech Sepa-
ration Challenge 2006 test set [2], based on NSA separation results,
are presented. The results fall short of those achieved by Algonquin
[3], a state-of-the-art mixture-model based method, but considering
that NSA runs an order of magnitude faster, the results are impres-
sive. NSA outperforms SNMF in terms of word error rate (WER) on
the task by a significant margin of over 9% absolute.

2. NON-NEGATIVE SUBSPACE ANALYSIS

We model the probability density of non-negative composite vector
data y as a superposition of non-negative probabilistic subspaces:

p(y) =

∫
v

∫
c

∑
a

p(y|v, c)·

∏
s

p(as)
∏
n

p(csn|as)p(vsn|as), (1)

where csn and vsn are random variables representing the coefficient
and basis vector of component n of subspace s, respectively, and as

encodes the collective binary activity/inactivity of the components of
subspace s. If the component activations are constrained such that
exactly one component is active in each subspace, the representation
reduces to a mixture model based data decomposition.
In this paper we will assume that y is composed from a linear com-
bination of subspace vectors, plus zero mean diagonal covariance
gaussian noise

p(y|v, c) = N (y;
∑
sn

csnvsn,Ψ), (2)

that the component activations of each subspace are independent

p(as) =
∏
n

πasn
sn (1− πsn)1−asn , (3)

18331-4244-1484-9/08/$25.00 ©2008 IEEE ICASSP 2008



and model the conditional distribution of each basis vector compo-
nent given that it is active as a diagonal-covariance gaussian

p(vsn|asn = 1) = N (vsn; μsn,Σsn), (4)

where ‖μsn‖2 = 1. We model the distribution of the coefficients as

p(csn|asn) =

{
N (csn; αs + βsn, τsn), asn = 1
λsn exp(−λsncsn), asn = 0

(5)

where λsn � 0. Note that inactive components can have non-zero
coefficients, but since λsn � 0, they contribute negligibly to the
generation of the observed data. As such, the conditional distribution
of inactive basis vectors can be somewhat arbitrarily set. A setting
that will prove very convenient for efficient learning and inference
is p(vsn|asn = 0) = p(vsn|asn = 1). Note that the conditional
mean of active coefficients consists of a subspace specific ”gain”
parameter αs, and a subspace and component-specific gain, βsn.
This instantiation of the NSA model is related to Sparse Non-
negative Matrix Factorization (SNMF) with a quadratic primary ob-
jective [1]. In SNMF, the objective ‖Y − V C‖2F + λ

∑
t
‖c[t]‖1 =∑

t
(y[t]−

∑
n

cn[t]vn)2 +λ
∑

n
|cn[t]| s.t. to {cn[t]}, {vnd} > 0,

is optimized to find a sparse representation of each column y[t] of
Y in terms of the basis set {vn}. This objective is equal to the neg-
ative log probability of the columns of Y under the assumption that
the basis coefficient priors are exponentially distributed with mean
1
λ
, and unit variance gaussian noise in the representation. The pre-
sented NSA model differs and extends upon SNMF in several ways.
In NSA, information about the relative scale of each basis compo-
nent is represented independently of its activation characteristics,
which makes it straightforward to utilize any known information
about the component activations or gains, and to extend the model.
The activation priors, for example, can be made context-dependent
to better model the characteristics of highly structured source signals
such as speech.
Another important property of the NSA model is that the component
vectors are random variables rather than parameters. The data is
composed not from basis vectors, but from basis distributions to bet-
ter represent the underlying probability density of the hidden source
represented by each subspace. This is particularly important when
the basis representation is sparse, because otherwise the probabil-
ity distribution of each source would be confined to a hyperplane of
dimension much lower than the data vector. It also facilitates the
computation of basis vector posteriors, that can be used to recover
context-dependent estimates of the hidden sources they represent.
It bears noting that the Probabilistic Sparse Non-negative matrix Fac-
torization (PSNMF) model presented in [8] also differs from NSA
in many important respects. In PSNMF, the component priors are
modelled as zero-mean gaussians with unit variance, the coefficient
priors as uniformly distributed, and the number of active compo-
nents as multinomial distributed. This model is designed specifi-
cally for blind analysis, whereas NSA has been designed to learn
and utilize source specific characteristics to separate composite sig-
nals, whose pieces can optionally be trained on isolated data. The
multinomial-distributed activation prior in PSNMF is very general
but is not amenable to continuous relaxation, and so even approxi-
mate inference techniques are computationally intensive.
In contrast, in the NSA model presented here the component ac-
tivations are assumed to be independent, which make the model
amenable to continuous relaxation. Note that if the activation pri-
ors were constrained to be equal in the NSA model, then the prior on
the number of active coefficients would be binomial-distributed. The

mean number of active coefficients in a subspaceNas can be upper-
bounded to enforce sparsity by upper-bounding the probability of
activation by πas so E[Nas ] ≤ Nsπas , where Ns is the number of
components in subspace s. For πas < 1

2
, which is always the case

for sparse representations, V ar[Nas ] ≤ Nsπas(1−πas) ≤ Nsπas .
Therefore despite the independence assumption on the activity of the
components in the presented NSA model, the framework provides a
means of controlling the sparseness of the representation.

3. LEARNING AND INFERENCE

Exact inference is generally intractable in the presented NSA model.
The component activations are discrete binary random variables and
so inference scales exponentially O(2C) in total number of compo-
nents C =

∑
s
Ns. One option is to apply iterative approximate

inference techniques such as variational methods or the sum-product
algorithm [3, 9] to estimate the component activations. Such ap-
proaches can be designed to scale linearly in the number of com-
ponents, but will require that the activations be updated iteratively,
which ignores important correlations in the component activations
during the optimization, and is quite computationally expensive in
practice. Here we achieve tractable learning and inference via an
approximate expectation-maximization (EM) algorithm that solves
a continuous relaxation of this expensive inference problem during
the E-Step with an efficient variational algorithm.

3.1. E-Step

We avoid the expensive task of inferring the component activations
by marginalizing them out, and then approximating the marginal
prior of the coefficients as exponentially distributed:

p(csn) = πsnN (csn; αs + βsn, τsn)

+ (1− πsn)λsn exp(−λsncsn),

≈ χsn exp(−χsncsn) ≡ p̃(csn), (6)

where χsn is obtained by moment-matching

χsn = (E[csn])−1

= (πsn(αs + βsn) + (1− πsn)/λsn)−1. (7)

The approximation is reasonable because πsn � 1− πsn when the
representation is designed to be sparse. Given this approximation,
the joint distribution of the component coefficients, vectors, and the
observed data vector is:

p̃(v, c, y) = p(y|c, v)p(v)p̃(c). (8)

Given the observation, y, the hidden variables v and c are non-
linearly related, and the posterior distribution, p̃(v, c|y), is non-
gaussian and intractable. However, the model is convex in c given v

and vice versa. We therefore approximate the posterior distribution
of c and v with a variational surrogate distribution with the follow-
ing factorized form:

q(c, v) = q(c)q(v) = q(c)
∏
d

p(vd) (9)

where vd = vec({vsnd}) is the vector formed from the elements of
the component vectors {vsn} in dimension d. The factorization over
the dimensions of the basis vectors follows from the diagonal covari-
ance of the basis and observation priors. Note that in p̃(v, c|y), the
basis vectors vd given c for each dimension d are correlated, as are
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the basis coefficients c given the basis vectors, v. Therefore we take
the variational posteriors of c and vd to be full-covariance gaussians:

q(c) = N (c; η
c
,Ωc) (10)

q(vd) = N (vd; ζ
vd

,Γvd
) (11)

The proposed form of the variational surrogate preserves the pre-
dominant structural properties of the true posterior, and leads to an
approximate E-Step that iteratively optimizes the highly correlated
subspaces of the hidden variables.
To identify q, we minimize the KL divergence between the surrogate
posterior and the joint distribution of the random variables of the
model. This correspondingly minimizes the KL divergence between
the surrogate and true posterior distribution of the hidden variables
of the model, and allows us to lower bound the probability of each
data vector, and the collection of data vectors:∑

t

log p(y[t]) =
∑

t

log
∑

v[t],c[t]

p̃(v[t], c[t], y[t]),

≥
∑

t

∑
v[t],c[t]

q(v[t], c[t]) log
p̃(v[t], c[t], y[t])

q(v[t], c[t])
,

= −
∑

t

D(q(v[t], c[t]) || p̃(v[t], c[t]|y[t])) +
∑

t

log p(y[t]).

(12)

Exploiting the conditional independencies of the NSA model, and
the factorized form of the q, we arrive at the following set of updates
that may be iterated to identify the parameters of q:

Γ
−1
vd

= Σ
−1
d + ψ−1

d (η
c
η

T
c

+ Ωc) (13)

∂Dq‖p

∂ζ
vd

= −Γ
−1
vd

ζ
vd

+ Σ
−1
d μd + η

c
ψ−1

d yd (14)

ζ
i
vd,sn = ζ

i−1
vd,sn ·

(∂Dq‖p/∂ζ
vd

)sn+

(∂Dq‖p/∂ζ
vd

)sn−
(15)

Ω
−1
c

=
∑

d

ψ−1
d (ζ

vd
ζ

T
vd

+ Γvd
) (16)

∂Dq‖p

∂η
c

= −Ω
−1
c

η
c

+
∑

d

ζ
vd

ψ−1
d yd − λ (17)

η
i
c,sn = η

i−1
c,sn ·

(∂Dq‖p/∂η
c
)sn+

(∂Dq‖p/∂η
c
)sn−

(18)

where Dq‖p = D(q(v[t], c[t]) || p̃(v[t], c[t], y[t])), λ =
vec({λsn}), and the notation ()sn+ and ()sn− denotes the positive
and negative terms of the snth component of the vector argument,
respectively. Multiplicative updates for the elements of ζ

vd
and η

c

are used to enforce non-negativity, which is a common approach to
optimizing NMF algorithms [6]. These updates are recursed during
each iteration of the variational updates until convergence. The con-
vergence of such updates has not been proved, but in practice this
has not been an issue.
The algorithm scales quadratically with the total number of compo-
nents C =

∑
s
Ns and linearly in the number of dimensions D as

O(DC2), but in practice, the initial η
c
update is O(DC) because

Γvd
is initialized to be diagonal, and the number of components

being considered can be pruned down to C′ � C after this ini-
tial update, with negligible loss in performance. In our experiments
with C = 512, for example, C′ < 50 for all test cases when com-
ponents contributing less than 0.01% of the reconstruction intensity
were pruned away after the first ηct

update. This sped up the al-
gorithm substantially. The performance impact of more aggressive
pruning has not yet been investigated.
Note thatΩ−1

c
, the precision of the current coefficient estimates η

c
,

reshapes the optimization surface of the component vectors ζ
vd
, and

similarly, the component vector precisions {Γ−1
vd
} affect the gradient

direction of η
c
.

3.2. M-Step

In the M-Step, the variational lower bound on the probability of the
observed data (12) is maximized w.r.t. the parameters of the NSA
model. The component vector parameter updates are given by:

μsn =
∑

t

π′sn[t]ζ
vsn[t] (19)

σ2
sn,dd =

∑
t

π′sn[t]((μsn,d − ζ
vsn,d[t])

2 + γ
vsn[t],dd) (20)

where π′sn[t] = p(asn[t] = 1|y[t]) is the posterior probability that
the component n of subspace s is active. Here we estimate the com-
ponent activation posteriors by simply computing the probability
that each component is active/inactive given the posterior estimate
of that component’s coefficient:

p(asn[t]|y[t]) ≈ p(asn[t]|csn[t] = ηcsn[t])

∝ p(asn[t])p(csn[t] = ηcsn[t]|asn[t]) (21)

The coefficient parameter updates are given by:

λn,s =

(∑
t

(1− π′sn[t])ηcsn[t]

)−1

(22)

αs =
∑
n,t

π′sn[t](ηcsn[t] − βsn) (23)

βsn =
∑

t

π′sn[t](ηcsn[t] − αs) (24)

τsn =
∑

t

π′sn[t]((ηcsn[t] − (βsn + αs))
2 + ωcsn[t]) (25)

Note that the αs + βsn representation of the active gain mean of
the component coefficients of each subspace is under-determined.
During learning αs is fixed and βsn is learned. At test time αs can
be adapted to re-normalize each source subspace to the test data.

4. EXPERIMENTS

The ”same gender” and ”different gender” subsets of the Pascal 2006
Speech Separation Challenge (SSC) test set [2], comprised of test ut-
terances containing two talkers speaking simultaneously—synthetic
mixtures generated from the Grid Corpus [10]—were used as a basis
for evaluating the proposed NSA algorithm.
So that we could directly compare the performance and execution
speed of NSA to Algonquin [11], a state-of-the-art source separation
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Method Algonquin NSA NSA− SNMF [7]
SG 25.7 41.6 50.7 53.0
DG 21.5 30.6 40.3 37.8
Overall 23.6 36.1 45.5 45.4

Table 1. Word error rate (WER) performance as a function of front-end sep-
aration algorithm, on the same gender (SG) and different gender (DG) subsets
of the SSC test set. Algonquin, a mixture model-based separation method
[11], outperforms the other approaches, which are subspace-based, but takes
an order of magnitude more computation time. Non-negative subspace anal-
ysis (NSA), the algorithm proposed here, outperforms sparse non-negative
matrix factorization (SNMF) on the task by more than 9% absolute.

method that models each speaker using a mixture model, NSA mod-
els for the sources were not learned but instead derived from learned
mixture models. Speaker-dependent, 256 component diagonal co-
variance gaussian mixture models (GMMs) of speech, trained on
319 dimensional high-resolution log power spectrum features, de-
rived from hamming-windowed 40 ms segments overlapped by 15
ms taken from the SSC training set, were used in all of our exper-
iments. Whereas Algonquin operates on log spectral (or cepstral)
features, NSA was applied in the power spectral domain, where the
interaction between the sources is approximately linear and the fea-
tures are non-negative, as assumed by the NSA model.
Speaker subspaces were generated from their respective log domain
GMMs by moment matching to generate corresponding GMMs in
the power spectral domain, and then normalizing the emission dis-
tributions to generate basis vector priors. The activation priors were
directly taken as the mixture component priors. The identification
and gain of the speakers was first estimated using the system de-
scribed in [11]. The SSC test utterances were then denoised using
Algonquin or NSA, and finally passed the recognition system de-
scribed in [11], which does speaker-dependent labelling.
Table 1 summarizes the word error rate (WER) recognition results
obtained on the same gender and different gender subsets of the SSC
task by Algonquin and NSA. The results obtained using NSA but
with the component vectors held fixed to their priors, denoted by
NSA−, are also depicted, as are the results obtained in [7] when
SNMF was applied to the task. Looking at the results, we can see
that Algonquin outperforms NSA on these tasks overall by over 10%
absolute, but the NSA result is nevertheless impressive considering
that it takes an order of magnitude less computation time than Algo-
nquin. The results obtained by NSA are in turn more than 9% better
overall than those obtained by NSA− and SNMF. NSA models the
component vectors as random variables rather than parameters, and
propagates uncertainty back and forth when iterating between esti-
mating the coefficient and vector posteriors. This improves the qual-
ity of the reconstructed speech estimates and the recognition result.

5. FUTUREWORK

The initial results obtained using the NSA algorithm presented here
are promising. Several important directions of future investigation
remain. The experiments described here adapted mixture models
into NSA subspace models, and from the log to power spectral do-
main by simple moment matching. Better results can surely be ob-
tained by utilizing learned NSA models.
An additional and promising direction of future investigation is to
make the component activation priors context-dependent. More
specifically, we are excited about the prospect of using NSA to do
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Fig. 1. Word error rate (WER) performance as a function of front-end sep-
aration algorithm and SNR on the same gender (SG) and different gender
(DG) subsets of the SSC test set. NSA consistently outperforms SNMF over
the task.

noise and secondary speech robust feature labelling in our existing
speech recognition systems, and developing fast multi-talker speech
recognition systems based on NSA.
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