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ABSTRACT

Nonnegative Tucker decomposition (NTD) is a recent multiway ex-
tension of nonnegative matrix factorization (NMF), where nonnega-
tivity constraints are incorporated into Tucker model. In this paper
we consider α-divergence as a discrepancy measure and derive mul-
tiplicative updating algorithms for NTD. The proposed multiplica-
tive algorithm includes some existing NMF and NTD algorithms as
its special cases, since α-divergence is a one-parameter family of
divergences which accommodates KL-divergence, Hellinger diver-
gence, χ2 divergence, and so on. Numerical experiments on face
images show how different values of α affect the factorization re-
sults under different types of noise.

Index Terms— α-divergence, nonnegative matrix factorization,
tensor factorization, Tucker models.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) is a widely-used multivari-
ate analysis of nonnegative data [1] which has many potential appli-
cations in machine learning, pattern recognition, and signal process-
ing. Successful applications of NMF result from its ability to learn a
parts-based representation through a matrix factorization, X = AS,
where X = [x1, . . . , xl] ∈ R

m×l
+ is a data matrix, A ∈ R

m×r
+ is a

basis matrix, and S ∈ R
r×l
+ is an encoding variable matrix.

In many real applications, data has a multiway structure. Exem-
plary data are video stream (rows, columns, RGB color coordinates,
time), EEG in neuroscience (channels, frequency, time, samples),
network flow (source ip, destination ip, source port, destination port,
time), bibliographic data (keywords, papers, authors, journals), and
so on. Conventional methods preprocess multiway data, putting
them into a matrix. Recently, there has been a great deal of research
on multilinear analysis which conserves the original multiway struc-
ture of the data. Motivated by multiway extensions of SVD, NMF
was also extended to 2D-NMF [2], nonnegative tensor factoriza-
tion (NTF) [3, 4], NTF2 [5], higher-order NMF [6], and nonnega-
tive Tucker decomposition (NTD) [7] which are based on Tucker2,
CANDECOMP/PARAFAC [8, 9], PARAFAC2, and Tucker model
[10], respectively. Recently NTF was shown to be useful in feature
extraction for continuous EEG classification [11].

LS error function or KL-divergence has been widely used as a
discrepancy measure in NMF, NTF, and NTD. Recently various di-
vergence measures such as Csiszár’s f -divergences, α-divergences,
and Bregman divergences, were considered as discrepancy measures
in NMF [12, 13] and NTF [5].

In this paper we further elaborate our recent work on NTD [7],
considering the α-divergence. We develop multiplicative updating

algorithms, referred to as ’α-NTD’, which iteratively minimize the
α-divergence between nonnegative data tensor and Tucker model.
Empirically we investigate the role of α on image de-noising by α-
NTD, confirming that the parameter α is related to the character-
istics of a learning machine, where the α-divergence of q from p
(Dα[p||q]) emphasizes the part where p is small as α increases [14].

2. BACKGROUND

2.1. α-Divergence

Let us consider two unnormalized distributions p(x) and q(x) as-
sociated with a random variable x. The α-divergence [15, 16, 17],
that belongs to Csiszár’s f -divergence [18], is a parametric family of
divergence functional, defined by

Dα[p||q] =
1

α(1− α)

∫
αp + (1− α)q − pαq1−α dμ, (1)

where α ∈ (−∞,∞) and μ is the Lebesque measure. As in KL
divergence, α-divergence is zero if p = q and positive otherwise.
This property follows from the fact that α-divergence (1) is convex
with respect to p and q. The α-divergence includes KL-divergence
(KL[q||p] for α → 0 or KL[p||q] for α → 1), Hellinger divergence
(α = 1

2
), and χ2-divergence (α = 2), as its special cases.

Considering α-divergence as an error measure, the objective func-
tion for NMF is given by

Dα[X ||AS] =

∑
i,j αXij + (1− α)[AS]ij −Xα

ij [AS]1−α
ij

α(1− α)
.

This objective function is iteratively minimized by the following
multiplicative updating algorithms:

S ← S �

{
A
�(X/[AS]).α

A
�
11
�

}. 1
α

, (2)

A ← A �

{
(X/[AS]).α

S
�

11
�

S
�

}. 1
α

, (3)

where � is Hadamard product, / is element-wise division, 1 =
[1, . . . , 1]�, and [X ].α = [Xα

ij ]. Updating rules (2) and (3), referred
to as ’α-NMF’, can be easily derived using the same technique as
used in [1].

2.2. Nonnegative Tucker Decomposition

An N -way tensor X ∈ R
I1×I2×···×IN has N indices (i1, i2, . . . , iN )

and its elements are denoted by Xi1i2...iN
where 1 ≤ in ≤ In. The
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mode-n matricization of X ∈ R
I1×I2×···×IN rearranges the ele-

ments of X to form the matrix X (n) ∈ R
In×In+1In+2···IN I1I2···In−1 ,

where In+1In+2 · · · INI1I2 · · · In−1 is in a cyclic order. We follow
the standardized notation and convention in Kiers’ work [19].

The mode-n product of a tensor S ∈ R
J1×J2×···×Jn×···×JN by

a matrix A
(n) ∈ R

In×Jn is defined by[
S ×n A

(n)
]

j1···jn−1injn+1···jN

=

Jn∑
jn=1

Sj1...jn−1jnjn+1···jN
Ainjn

, (4)

leading to a tensor S ×n A
(n) ∈ R

J1×J2×···×In×···×JN . With the
mode-n product, the matrix factorization X = USV

� is written
as X = S ×1 U ×2 V .

Nonnegative Tucker decomposition (NTD) seeks a decomposi-
tion of a nonnegative N -way tensor X ∈ R

I1×I2×···×IN

+ as mode
products of a nonnegative core tensor S ∈ R

J1×J2×···×JN

+ and N

nonnegative mode matrices A
(n) ∈ R

In×Jn

+ ,

X ≈ X̂ = S ×1 A
(1) ×2 A

(2) · · · ×N A
(N), (5)

which can be written in an element-wise form as

X̂i1i2···iN
=

∑
j1,j2,...,jN

Sj1j2···jN
A

(1)
i1j1

A
(2)
i2j2

· · ·A
(N)
iN jN

. (6)

The mode-n matricization of X in Tucker model (5), is expressed by
Kronecker products of the mode-n matricization of the core tensor
and mode matrices:

X (n) ≈ A
(n)

S(n)

[
A

(n−1) ⊗ · · · ⊗A
(2) ⊗A

(1)

⊗A
(N) ⊗ · · · ⊗A

(n+2) ⊗A
(n+1)

]�
= A

(n)
S(n)A

(\n)�, (7)

where S(n) is the mode-n matricization of the core tensor S . The
representation (7) plays a crucial role in deriving multiplicative up-
dating algorithms for NTD.

NTD provides a general framework for nonnegative tensor fac-
torization, including NMF, nsNMF, 2D-NMF, and NTF as special
cases [7]. Models for NMF, nsNMF, 2D-NMF, and NTF are sum-
marized in Table 1 for easy comparison to NTD (5). In NTD, the
core tensor and mode matrices are learned iteratively by multiplica-
tive updates. Various methods such as NMF, nsNMF, 2D-NMF, and
NTF emerge from NTD, by imposing some pre-specified structure
on the core tensor or mode matrices instead of learning them.

3. α-NONNEGATIVE TUCKER DECOMPOSITION

α-NTD considers the objective function that is the α-divergence of
Tucker model X̂ (given in (5)) from the N -way tensor X of data:

Dα[X ||X̂ ] =
1

α(1− α)

∑
i1,i2,...,iN

αXi1i2···iN

+ (1− α)X̂i1i2···iN
−Xα

i1i2···iN
X̂ 1−α

i1i2···iN
. (8)

Multiplicative updating algorithms for NTD were elegantly derived
in [7] when LS error function or KL-divergence was used as an ob-
jective function. We derive multiplicative updates for NTD in a sim-
ilar way when α-divergence objective function (8) is considered.

We use the following properties in deriving multiplicative up-
dates for α-NTD:

vec
(
UBV

�
)

= (V ⊗U )vec(B),

[U ⊗ V ]� = U
� ⊗ V

�,

(U ⊗ V ) (B ⊗C) = UB ⊗ V C .

The core idea in developing multiplicative updates for α-NTD is to
use the mode-n matricization of Tucker model X̂ , given by

X (n) ≈ A
(n)

S(n)A
(\n)� = A

(n)
S

(n)
A , (9)

vec
(
X (n)

)
≈ vec

(
A

(n)
S(n)A

(\n)�
)

=
(
A

(\n) ⊗A
(n)

)
vec

(
S(n)

)
. (10)

Note that these matricized equations have the same form as NMF.
Thus, update for the core tensor follows (2) and updates for mode
matrices are derived from (3).

We present a detailed derivation of the updating rule only for the
core tensor since updates for mode matrices directly emerge from
(3) and (9). It follows from (2) and (10) that the n-mode matricized
core tensor is updated by

vec
(
S(n)

)
← vec

(
S(n)

)
�K

. 1
α

n , (11)

where

Kn =

[
A

(\n) ⊗A
(n)

]� [
vec

(
X (n)

)
/vec

(
X̂ (n)

)].α

[
A

(\n) ⊗A
(n)

]�
1

. (12)

Note that

vec
(
X (n)

)
/vec

(
X̂ (n)

)
= vec

([
X /X̂

]
(n)

)
.

Invoking (9) with this relation leads to[
A

(\n) ⊗A
(n)

]�
vec

([
X /X̂

]
(n)

).α

= vec
(

A
(n)�

[
X /X̂

].α

(n)
A

(\n)

)
= vec

([
(X /X̂ ).α ×1 A

(1)� · · · ×N A
(N)�

]
(n)

)
.

In a similar way, we have[
A

(\n) ⊗A
(n)

]�
1 = vec

([
E ×1 A

(1)� · · · ×N A
(N)�

]
(n)

)
,

where E is a tensor whose every elements are one. With these calcu-
lations, the multiplicative updating rules for the core tensor as well
as mode matrices in α-NTD are given by

S ← S �

{
(X /X̂ ).α ×1 A

(1)� · · · ×N A
(N)�

E ×1 A
(1)� · · · ×N A

(N)�

}. 1
α

,(13)

A
(n) ← A

(n) �

⎧⎪⎨⎪⎩
[
(X /X̂ ).α

]
(n)

S
(n)�
A

11
�

S
(n)�
A

⎫⎪⎬⎪⎭
. 1

α

, (14)
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Table 1. Models for NMF, nsNMF, 2D-NMF, and NTF are summarized in the context of tensor factorization. I is the identity matrix, M is
a smoothing matrix defined by (1 − θ)I + θ

R
11
� where the parameter θ satisfies 0 ≤ θ ≤ 1, and I is a unit superdiagonal tensor where

ii1i2···iN
= δi1i2···iN

. X i3 and Si3 are the i3th frontal slice of X and S . i.e. X i3 = X :,:,i3 .

Model Matrix representation Tensor representation Fixed factor

NMF X ≈ AS X ≈ I ×1 A ×2 S
�

I

nsNMF X ≈ AMS X ≈ M ×1 A ×2 S
�

M

2D-NMF X i3 ≈ A
(1)

Si3A
(2)� , (i3 = (1, 2, . . . , I3) X ≈ S ×1 A

(1) ×2 A
(2) ×3 I I

NTF X ≈
∑R

r=1 A
(1)
:,r ◦A

(2)
:,r ◦ · · · ◦A

(N)
:,r X ≈ I ×1 A

(1) ×2 A
(2) · · · ×N A

(N)
I

for n = 1, . . . , N . In order to reduce the computational cost, terms
in (13) and (14) are computed in the following manner:

E ×1 A
(1)� · · · ×N A

(N)� = A
(1)�

1 ◦ · · · ◦A
(N)�

1[
(X /X̂ ).α

]
(n)

S
(n)�
A =

[
(X /X̂ ).α ×m�=n A

(m)�
]

n
S
�
(n)

1
�

S
(n)�
A =

[
S ×m�=n 1

�
A

(m)
]�
(n)

, (15)

where ◦ is the outer product and S ×m�=n A
(m) = S ×1 A

(1) ×2

· · · ×n−1 A
(n−1) ×n+1 A

(n+1) · · · ×N A
(N).

4. NUMERICAL EXPERIMENTS

Our Matlab implementation of α-NTD partly uses the tensor tool-
box [20]. We investigate the role of α ∈ {0.5, 1, 2} in the tensor
factorization. To this end, we apply α-NMF and α-NTD to a im-
age de-noising task with different types of noise or outliers. We use
ORL face DB [21] (X ∈ R

48×48×400
+ collects 48×48 images of 400

people) to generate noise-contaminated images (see Fig. 1) where 3
different types of noise are considered, including pepper (black), salt
(white), and pepper & salt (black and white). For each image, 5% of
pixels are randomly chosen and then are converted to black or white
pixels. In α-NMF, the number of basis is set as 25. In α-NTD, the
dimension of the core tensor is set as 24 × 24 × 25. Note that α-
NTD require smaller number of parameters (about 38%), compared
to α-NMF.

Fig. 1. From top to bottom: images contaminated by pepper (black),
salt (white), and pepper & salt (black and white) noise.

Experiments are carried out 20 times independently for each
type of noise and each value of α = {0.5, 1, 2}. As a perfor-
mance measure, averaged peak-signal-to-noise ratio (PSNR) is used.

Higher PSNR values represent better results. The results are shown
in Fig. 2 and Table 2. In most of cases, α-NTD is more robust to
noise than α-NMF. Interesting observations in these experiments are
as follows. The larger α results in the better performance in the case
of pepper noise and the smaller α works better in the case of salt
noise. In fact, these results are consistent with the characteristics of
α-divergence where Dα[p||q] emphasizes the part where p is small
as α increases [14].

Fig. 2. Reconstructed image by α-NTD. From top to bottom: α is
0.5, 1, and 2. From left to right: pepper (black), pepper & salt (black
and white), and salt (white) noise.

In the case of pepper noise, noise-contaminated pixels are re-
placed by Xij = 0 and the associated term in the error function is
1
α

X̂ij . The larger value of α penalizes such terms, leading to the bet-
ter performance. In the case of salt noise, noise-contaminated pixels
are given as Xij = 255 and the associated term in the error func-
tion is 1

α(1−α)
{255α + (1 − α)X̂ij − 255αX̂1−α

ij }. This function
is shown in Fig. 3, where the smaller value of α de-emphasize the
outlier effect.

5. CONCLUSIONS

We have presented a method of nonnegative Tucker decomposition
in the case where α-divergence is considered as an error function.
We have derived multiplicative updating rules for α-NTD which in-
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Table 2. The relationship between types of noise and divergences.
In the case of pepper (black) noise, the larger value of α gives better
result. In the case of salt (white) noise, the smaller value of α gives
better result.

pepper (black) pepper & salt salt (white)

α = 0.5 22.18 25.04 25.54

NTD α = 1 24.82 25.99 25.09

α = 2 25.97 25.49 23.59

α = 0.5 20.30 22.30 25.43

NMF α = 1 24.17 25.27 24.72

α = 2 26.31 22.82 24.85

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

900

1000

α = 0.5

α = 2

Fig. 3. The behavior of 1
α(1−α)

{255α+(1−α)X̂ij−255αX̂1−α
ij }

with respect to X̂ij , in the case of salt noise.

clude various existing algorithms such as NMF, nsNMF, NTF, NTF
as special cases. We have also investigated the role of α in α-NTD
with experiments on image de-noising under 3 different types of
noise. Empirical results were well matched with the known char-
acteristics of α-divergence.
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