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ABSTRACT

Independent component analysis (ICA) for convolutive mixtures is
often applied in the frequency domain due to the desirable decou-
pling into independent instantaneous mixtures per frequency bin.
This approach suffers from a well-known scaling and permutation
ambiguity. Existing methods perform a computation-heavy and some-
times unreliable phase of post-processing which typically makes use
of knowledge regarding the geometry of the sensors post-ICA. In this
paper, we propose a natural way to incorporate a priori knowledge of
the unmixing matrix in the form of a prior distribution. This softly
constrains ICA in a manner that avoids the permutation problem,
and also allows us to integrate information about the environment,
such as likely user configurations, into ICA using a unified statis-
tical framework. Maximum a priori ICA easily follows from the
maximum likelihood derivation of ICA. Its effectiveness is demon-
strated through a series of experiments on convolutive mixtures of
speech signals.

Index Terms— Unsupervised learning, Acoustic signal process-
ing, Array signal processing

1. INTRODUCTION

Blind source separation (BSS) has been an active area of research for
many years. It aims to recover original source signals using only the
information from a set of mixed observation signals. One approach
to BSS is independent component analysis (ICA), which assumes
that the original sources are statistically independent. ICA can be
derived from several standpoints, including information maximiza-
tion [1], maximizing non-Gaussianity [2], and maximum likelihood
[3]. Typically ICA is derived for the case of instantaneous mixing,
where sources are mixed via a “mixing matrix”. Realistic room envi-
ronments cause reverberation which generate convolutive mixtures.
Instantaneous mixing is a poor approximation to such environments.

Performing convolutive ICA in the time domain is computation-
ally demanding. A more desirable approach is to convert the ob-
servations to the frequency domain, and perform ICA independently
in each frequency bin. Unfortunately, frequency-domain ICA suf-
fers from a well-known scaling and permutation ambiguity which
must be resolved post-ICA. There is no clear solution to the permu-
tation problem, but many approaches exploit knowledge regarding
the room and sensor geometry in this stage (e.g. [4]). These ap-
proaches are computationally complex, especially when scaling to
a large number of sources, and can be unreliable. One approach
[5] constrains ICA to a specific “look” direction, but in our opinion
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such a constraint is too rigid. It may be unnecessary for frequencies
in which there is little or no energy, and if there is an error in the
DOA estimation, the hard constraint may limit performance. Others
have used a sophisticated prior model of speech, such as a mixture
of Gaussians [6].

In this paper, we propose that knowledge of the unmixing matrix
or room environment can be integrated into ICA a priori, address-
ing the permutation ambiguity, and avoiding an expensive post-ICA
repair phase. This approach also allows us to naturally incorporate
knowledge we have regarding the sources or environment. Unlike
a hard constraint, a prior encourages the solution toward a direction
of interest, but the data has the final say. Maximum a priori (MAP)
ICA can be derived in a manner that is similar to maximum likeli-
hood ICA. The greatest challenge is in choosing the form of prior for
the unmixing matrix. We propose using a beamformer-based prior
model as beamforming and ICA essentially solve for the same pa-
rameters but with different objective functions. With a suitable prior,
we can unify the two approaches in a principled probabilistic model.

2. MAXIMUM LIKELIHOOD ICA

We first review the maximum likelihood approach to deriving ICA.
More details can be found in [2]. We assume that a source vector,
x ∈ �N is sampled according to a joint density p(x1, . . . , xN ) =
p(x1)p(x2), . . . , p(xN ), where N represents the number of inde-
pendent sources.

Furthermore, we assume the system undergoes linear mixing
with no noise, y = Hx, and we observe only the mixture, y.
In ICA, we seek the the unmixing matrix W = H−1 such that
x̂ = Wy. If we assume that x is distributed according to p(x),
then the likelihood of the observed vector can be written as

pY (y) = |H−1|p(H−1
y) = |W|p(Wy) (1)

where we have applied a change of variable inside the distribution.
Given a sequence of T independent observationsY = {y1, . . . ,yT },
and treatingW as a parameter, we can compute its ML estimate as:

WML = argmax
W

p(Y;W) (2)

where p(Y;W) is

p(Y;W) =
Y

t

|W|p(Wyt). (3)

This likelihood expression can be maximized using gradient descent.
The gradient of the log-likelihood can be expressed as

∂ log p(Y;W)

∂W
= T (W−1)T +

X
t

g(Wyt)y
T
t (4)
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where g(q) = p′(q)
p(q)

. With the appropriate choice of density1, p(x),
this result is the well-known Bell-Sejnowski InfoMax gradient-based
update rule [2]. Convergence using this update rule can be im-
proved by using the natural gradient, which is obtained by multi-
plying through byWT W to obtain

ΔW ∝ W +
1

T

X
t

g(x̂)x̂t
T
W =

 
I +

1

T

X
t

g(x̂)x̂t
T

!
W.

2.1. Frequency domain convolutive ICA

The above derivation is valid for the simple case of linear, instan-
taneous mixing. In most common acoustic environments, such as
rooms, the mixing process is not instantaneous, but convolutive, as
the source signals reflect off of the room’s surfaces and arrive at the
sensors as delayed and attenuated copies. This situation is consider-
ably more complicated as the elements of the mixing and unmixing
matrices are no longer scalar elements but rather FIR filters, often of
considerable length.

To avoid such complications, separation of convolutive mixtures
is typically started by transforming the observed signals into the fre-
quency domain. This converts the convolutive time-domain mixture
into a series of independent instantaneous mixtures, expressed as

p(Y;W) =
Y
τ

KY
ω=1

|W(ω)|p(W(ω)yτ (ω)) (5)

where yτ (ω) is the vector of observed signals at frame τ and fre-
quency ω and K is the total number of frequency components. De-
spite this computationally attractive decoupling, the ICA solution
has permutation and scaling ambiguities: permuting the rows of
W(ω) or multiplying a row by a constant still produces a valid ICA
solution. Because the ICA solutions at each frequency can have a
different scaling and permutation, re-assembling the signal from its
parts is not possible without a subsequent post-processing step.

The scaling ambiguity is easily handled by choosing a reference
sensor for each estimated source, to which the estimated signals are
normalized [4]. The permutation problem has been more challeng-
ing, though several methods have been proposed for its solution.
Most use either spatial information such as the direction-of-arrival
estimation, or spectral information such as the correlations of output
samples across frequency and time. While these methods have been
shown to work reasonably well, they are complex, computationally
intensive, and do not scale well to a high number of sources.

This “unmix-then-repair” approach to frequency-domain ICA is
somewhat strange in that the unmixing occurs in a truly blind man-
ner using very minimal assumptions about the independence of the
sources. Then some knowledge about the mixing process, such as
sensor geometry, is introduced in a downstream repair stage. In the
following section, we introduce a principled and natural way to in-
corporate such prior knowledge directly into the ICA algorithm in
order to prevent the permutation problem from arising during un-
mixing, and as a result, eliminate the need for permutation fixing.

3. INCORPORATING PRIOR KNOWLEDGE INTO ICA

Recall from Sec. 2 that conventional ICA seeks the maximum like-
lihood estimate of the unmixing parameters W based on the ob-
served data Y . Alternatively, we can treat W as a random variable

1We assume here that we can use one of the standard formulations of
p(x) used in ICA. In this work, we use the Laplacian distribution described
in [4].

that is generated according to some prior distribution p(W). Given
this prior distribution, we can reformulate ICA as a MAP estimation
problem:

WMAP = argmax
W

p(W|Y) = argmax
W

p(Y|W)p(W). (6)

Substituting (3) into (6), the expression to be maximized can be
rewritten as

p(Y|W)p(W) =

 Y
t

|W|p(Wyt)

!
p(W). (7)

As before, taking the log and differentiating leads to

∂ log(p(W|Y))

∂W
= T (W−1)T +

X
t

g(Wyt)y
H
t + h(W) (8)

where h(W) = p′(W)
p(W)

. Dividing by T , the gradient becomes

ΔW ∝ (W−1)T +
1

T

X
t

g(Wyt)y
H
t +

1

T
h(W). (9)

This expression shows that the role of the prior in the gradient update
changes as a function of the amount of data T . As T grows larger,
the prior plays a decreasingly important role. Of course, to com-
pute h(W), the form of p(W) must be known. Furthermore, if the
form of the prior distribution is not chosen properly, the frequency
domain version of MAP ICA will suffer from the same permutation
problems as conventional ICA. In the next section, we will describe
one method for constructing an useful prior distribution forW.

3.1. A prior model for frequency domain ICA

In frequency domain ICA, p(W) really represents the prior distribu-
tions over the unmixing matrices in all frequency bins, i.e. p(W) =
p(W(1), . . . ,W(K)). If we assume the frequency bins are all in-
dependent as usual, this can be factorized simply as the product
of a series of independent distributions p(W(ω)). However, we
would like the prior distribution to somehow connect the unmixing
matrices across all frequencies in such a manner so as to prevent
the occurrence of the permutation problem. To do so, we will as-
sume that the prior model forW is generated by a hidden variable,
Θ = {θ1, . . . , θN}, a vector that represents the direction of arrival
(DOA) of each of the N sources. Since each θ is a continuous vari-
able, we quantize θ into directional “bins” to avoid integration. Un-
der this model, the prior distribution can be expressed as

p(W) =
X
Θ

p(W|Θ)p(Θ) =
X
Θ

Y
ω

p(W(ω)|Θ)p(Θ). (10)

Thus, according to (10), the distributions of the different unmixing
matrices are not independent, but rather are conditionally indepen-
dent, given the hidden variable Θ. This is the key to preventing the
permutation problem: Θ tiesW(ω) across frequencies.

To compute the MAP estimate ofW under this model, we can
rewrite the posterior distribution in (6) as

p(W|Y) =
X
Θ

p(W, Θ|Y) ∝ p(Y|W)
X
Θ

p(W, Θ) (11)

where we have applied Bayes’ rule, dropped the normalizing term
that is independent ofW, and pulled p(Y|W) out of the summation.
The gradient of the logarithm of (11) can be expressed as

∂

∂W
logp(W|Y)=

∂

∂W
logp(Y|W)+

∂

∂W
log
X
Θ

p(W, Θ). (12)
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The first term on the right side of (12) is identical to the maximum
likelihood gradient in (4). Noting that x = exp(log(x)) and apply-
ing the chain rule, the second term can be written as

∂

∂W
log
X
Θ

p(W, Θ)

=
1P

Θ p(W, Θ)

X
Θ

exp(log (p(W, Θ)))
∂

∂W
log p(W, Θ)

=
1

p(W)

X
Θ

p(W, Θ)
∂

∂W
log

 Y
ω

p(W(ω), Θ)

!

=
X
Θ

p(Θ|W)
X

ω

∂

∂W(ω)
log (p(W(ω)|Θ)) . (13)

The posterior probability p(Θ|W) is computed from the prior dis-
tribution ofW over all frequency bins using Bayes rule:

p(Θ|W) =

Q
ω

p(W(ω)|Θ)p(Θ)P
Θ′

Q
ω

p(W(ω)|Θ)p(Θ)
. (14)

In summary, MAP ICA is a gradient descent algorithm with an
update rule involving two terms: one that is the same as the conven-
tional ICA update rule, and another that depends on the prior model
chosen forW. The posterior term, p(Θ|W), depends onW, which
is updated with each iteration of ICA. So each iteration of our algo-
rithm consists of two steps, much like the EM algorithm:

Step 1: Update the posterior, p(Θ|W), givenW

. Step 2: UpdateW, given p(Θ|W) (by gradient descent).
Of course, as (13) indicates, the exact gradient expression de-

pends on the exact form of p(W(ω)|Θ). This will be discussed in
the following section.

3.2. A beamformer-based prior model

ICA and traditional beamforming both optimize the same set of pa-
rameters in order to achieve a similar high level goal: enhancement
of the target signal and attenuation of interference, typically by spa-
tial filtering. However, their objective functions are quite different
as are the assumptions made in each class of algorithms. Neverthe-
less, researchers have studied the equivalence between solutions of
the two classes of algorithms under certain conditions [7]. That is,
in certain cases, the rows of the learned unmixing matrix in ICA are
much like a series of beamformers or interference cancellers, and
vice versa.

Based on this observation, we believe a beamformer, which is
analagous to a row of W, is an attractive source of a prior model
p(W). For example, a superdirective or delay-and-sum beamformer
for the prior on W is advantageous because it can be computed in
closed form and is dependent only on the direction of arrival of the
target source. As a result, the N rows ofW, corresponding to each
of the sources, will be independent of each other. Because our hid-
den variable Θ operates on quantized DOA regions, we require that
the model allows for uncertainty in DOA, while maintaining a com-
putationally tractable update rule. Therefore the unmixing matrix in
each frequency bin is modeled as the joint probability ofN indepen-
dent multivariate Gaussians:

p(W(ω)|Θ)=

NY
i=1

p(wi(ω)|θi)=

NY
i=1

N(wi(ω); μθi
(ω),Σθi

(ω)) (15)

Recall that the MAP ICA update rule involves a term from the
ML update (4) and a term involving the prior (13). WhenP (W(ω)|Θ)

Fig. 1. For each directional bin, several source locations are sam-
pled. Beamformers are directly computed from source locations,
and used to estimate the mean and covariance for p(wi(ω)|θi) .

is Gaussian as in (15), the gradient with respect towi(ω) is simplyX
Θ

p(Θ|W)
`
−Σθi

(ω)−1(wi(ω) − μθi
(ω))

´
(16)

whereΣθi
(ω) and μθi

(ω) are estimated in an offline training phase
from an ensemble of beamformers. This process is described in more
detail in Section 4.

The last component to p(W) is the choice of the prior distri-
bution over the hidden DOA variable Θ. Any knowledge about the
likelihood of particular source configurations can be reflected in the
setting of p(Θ). For example, if nothing is known about the source
locations, then it can be uniform, making all configurations of theN

sources equally likely. On the other hand, an appropriate choice of
p(Θ) can reflect a priori knowledge of the source locations.

Regardless of source, each θi will be discretized into B bins,
and all N sources use the same model of p(wi(ω)|θi). Thus, the
prior model forW consists of B × K Gaussians, one for each fre-
quency and DOA bin. Since a superdirective beamformer can be
computed in closed form given a source direction [8], the parameters
of p(wi(ω)|θi) can be fit by sampling several source DOA from a
bin, computing the respective vectors representing the beamformers
(at each frequency), and then taking the sample mean and covariance
of the beamformer vector. This process is shown in Figure 1.

4. EXPERIMENTS

We carried out a series of experiments to separate convolutive mix-
tures of speech signals captured by a microphone array in a reverber-
ant environment. We restrict ourselves to the case where the number
of sources N equals the number of sensors, M , mainly for conve-
nience. This allows us to more accurately compare to the baseline
frequency-domain ICA algorithm that was described in Sec. 2.1.

Our experiments are carried out for N=2 and N=3 scenarios,
using speech utterances convolved with impulse responses created
via the image method [9] simulating a 5.73 m×3.12 m×2.70 m room
with reverberation times of 150ms and 300ms. The experimental
setup for the N=2 case matches that described in [7], with sources
1.15 m from the array, one at −30◦ and one at 40◦. For the N=3
experiments, a third microphone was added to the array as well as a
third source at −5◦. All experiments used a microphone spacing of
4 cm, a sampling rate of 8 kHz and a frame size of 2048 samples.

4.1. Training the prior distribution

The components needed for the prior distribution are the conditional
distribution p(W|Θ) and discrete prior distribution p(Θ). To cre-
ate p(W|Θ), we first quantize the array’s working area and then
train the Gaussian distributions for the beamformers in each direc-
tional bin. In these experiments, we used 9 sectors, each 20o wide,
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Fig. 2. SIR results for the traditional ICA followed by permutation
fixing and the proposed MAP ICA algorithm. Top: 2 sources, 2
microphones. Bottom: 3 sources, 3 microphones.

spanning −90o to +90o where 0o is directly in front of the array.
For each directional bin i, 2000 source location samples were drawn
from a Gaussian centered at a point between the boundaries of that
bin, at a radius of 1.15m. For every location, a superdirective beam-
former was computed and this ensemble of beamformers was used to
estimate the mean and covariance of p(wi(ω)|θi). This was repeated
for every directional bin and every frequency to create p(W|Θ).

The prior distribution over source configurations, p(Θ), was con-
structed by hand to favor configurations where users were between
−70o to−10o or+10o to+50o (additionally−30o to+10o for the
N = 3 case), reflecting knowledge of approximate user location.
Remaining configurations were considered unlikely; those with mul-
tiple sources in the same sector were considered extremely unlikely.

4.2. Source separation evaluation

To evaluate the proposed MAP ICA approach, we compared the
separation performance of the baseline frequency domain ICA al-
gorithm described in Section 2.1, both with and without a post-ICA
permutation fixing stage, to the proposed MAP ICA algorithm. In
the baseline method (with or without permutation fixing), the un-
mixing matrices were initialized to the identity matrix for each fre-
quency bin. In our proposed MAP ICA approach, the unmixing ma-
trices were initialized to the mean of the prior p(W).

In all experiments, ICA is performed for 2000 iterations at a con-
servative learning rate (1 × 10−5). After ICA is completed, we per-
form scaling alignment and then perform an integrated permutation
alignment which involves source localization and inter-frequency
correlation of separated signals. This approach is described in [4].
No permutation fixing is applied to the MAP ICA algorithm.

The signal-to-interference ratio (SIR) of the ICA output of the

three methods is shown in Figure 2. For each mixture, the SIR scores
were computed for each source in the mixture and averaged across
all sources. In all cases, permutation fixing matches or improves the
baseline SIR scores as expected. We see that typically, incorporating
the prior allows us to achieve results comparable to or slightly better
than to the baseline algorithm with permutation fixing. However, it
is interesting to note that while the permutation fixing approach uses
both spatial information (DOA) and spectral information (envelope
correlation), our MAP ICA model uses a prior that only captures
spatial information. Thus, it is likely that incorporating an appropri-
ate prior of the source distributions, such as the GMM used in [6]
would capture the spectral correlation and result in further improve-
ments. Nevertheless, the fact that the proposed MAP ICA algorithm
achieves performance similar to permutation fixing, while using only
half of the knowledge, demonstrates that it is a promising approach.

5. CONCLUSIONS

We have proposed a framework for maximum a posteriori ICA, and
experimented with a beamformer-based prior model of the unmixing
matrix. Incorporating a prior model ofW can allow us to avoid the
well-known permutation problem in convolutive, frequency-domain
ICA, while achieving or outperforming the traditional approach of
unmixing following by permutation fixing.

In future work, we hope to extend the beamformer prior to in-
corporate knowledge of both the source direction and the directions
of the competing sources. In addition, we hope to experiment with
other prior models for the unmixing matrix, potentially data-driven,
which could be modeled by more representationally powerful distri-
butions than a mixture of Gaussians.
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