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ABSTRACT 
Independent component analysis (ICA) is a popular approach for 
blind source separation (BSS). In this study, we develop a new 
mutual information measure for BSS and unsupervised learning of 
acoustic models. The underlying concept of ICA unsupervised 
learning algorithm is to demix the observations vectors and 
identify the corresponding mixture sources. These independent 
sources represent the specific speaker, gender, accent, noise or 
environment, etc, embedded in acoustic models. The novelty of the 
proposed ICA is to derive a new metric of mutual information for 
measuring the dependence among mixture sources. We focus on 
building this metric based on the Jensen’s inequality, which is 
illustrated to use smaller number of iterations in finding the 
demixing matrix compared to other types of mutual information. 
We present a parametric ICA using the generalized Gaussian 
distribution to characterize the non-Gaussianity of model 
parameters. Also, a nonparametric ICA is established by using the 
Parzen window based distribution. In the experiments on BSS and 
noisy speech recognition, we demonstrate the effectiveness of the 
proposed Jensen ICA compared to FastICA and other 
nonparametric ICA. 
Index Terms— Independent component analysis, mutual 
information, Jensen’s inequality, speech recognition 

1. INTRODUCTION 
Independent component analysis (ICA) [1][6] is a widely accepted 
mechanism in solving blind source separation (BSS) problem. In 
the BSS problem, a set of observations is given while the 
underlying source information is hidden. The mixing weights of 
the individual sources are unknown. The BSS problem is aimed to 
identify the source signals and/or the mixing weights so as to 
separate these information sources in signal domain, feature 
domain or model domain [5]. The basic assumptions in the ICA 
method have the statements that the source signals are mutually 
independent and non-Gaussian distributed. Using the ICA, an 

1M  observation vector x  is modeled from M  statistically 
independent sources s  by sx A  where A  is a square and 
invertible mixing matrix of size MM . The elements of 

T
Mss ],,[ 1s are linearly mixed to the observations 

T
Mxx ],,[ 1x  by the transformation matrix A . We are 

engaged in an inverse problem and find the source signals by 
xs W  where W  is a demixing matrix. In this study, we highlight 

a new ICA procedure for separating audio signals as well as 
clustering hidden Markov models (HMMs). In general, if the data 
is properly transformed or demixed, the resulting components can 
be grouped into clusters where the elements are dependent in the 
same cluster and independent to the variables in different clusters 
[2]. We concern the inter-cluster independence and the intra-
cluster dependence for building a new ICA clustering algorithm. 

In the ICA procedure, it is critical to estimate the demixing 
matrix W  by optimizing the metric of independence. The metrics 
of likelihood function, negentropy, kurtosis and mutual 
information have been successfully applied in developing ICA 
algorithms [6]. Minimization of the mutual information among 
sources is viewed as a meaningful information theoretic solution. 
Conventionally, the ICA method using minimum mutual 
information (MMI) was constructed by Shannon’s mutual 
information where the difference between the marginal entropy 
and the joint entropy of different information sources was 
accumulated. One difficulty of using MMI was the estimation of 
marginal entropy. Comon approximated the output marginal 
probability density function by applying the truncated polynomial 
expansion [6]. Alternatively, the MMI method proposed by Xu et 
al. [12] prevented the polynomial expansion through 
approximating the Kullback-Leibler divergence using the Cauchy-
Schwartz inequality. ICA estimation was performed by using the 
Parzen window based distribution. Also, Boscolo et al. [3] 
proposed an ICA algorithm where the mutual information between 
the reconstructed signals was minimized. Using nonparametric 
kernel density technique, this algorithm was carried out by 
estimating the unknown probability density functions of the source 
signals and finding the unknown mixing matrix. In acoustic feature 
analysis, the ICA method was used to project MFCC features and 
discover that the first MFCC feature was associated with the 
speaker’s gender and the second feature was associated with the 
speaker’s accent [8]. In this paper, we present a new ICA 
algorithm using the mutual information based objective function 
derived by the Jensen’s inequality. The source densities are 
modeled by the generalized Gaussian function [4][9] for modeling 
the non-Gaussian structure. A wide class of distributions including 
uniform, Gaussian, Laplacian and other sub-Gaussian and super-
Gaussian densities can be characterized. We develop the Jensen 
ICA (J-ICA) algorithm by using not only the parametric source 
density but also the non-parametric source density. This algorithm 
is examined by the experiments of BSS and speech recognition. 

2. MUTUAL INFORMATION FOR ICA 
Objective function is one of the most important issues in ICA 
implementation. Mutual information is known as a popular metric 
of measuring the dependence in the observed variables. There are 
several measures of mutual information existing in the literature. 

2.1 Mutual Information Measures 
Assume we have two continuous variables 21, xx with marginal 

distributions )( 1xp , )( 2xp  and joint distribution ),( 21 xxp , the 
Shannon’s mutual information of 21 , xx  is defined by [11] 

)),(())(())((),( 212121S xxpHxpHxpHxxI

21
21

21
21 )()(

),(
log),( dxdx

xpxp
xxp

xxp ,             (1) 
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where )(H  is a Shannon’s entropy and 0),( 21S xxI  with 
equality if and only if 21 , xx  are independent. Also, ),( 21S xxI  is 
known as a Kullback-Leibler divergence between ),( 21 xxp
and )()( 21 xpxp . In [12], the quadratic mutual information based 
on the Euclidean distance (ED) and the Cauchy-Schwartz (CS) 
inequality was proposed as 

21
2

212121ED ))()(),((),( dxdxxpxpxxpxxI ,        (2) 

2
212121

21
2

2
2

121
2

21
21CS ))()(),((

)()(),(
log),(

dxdxxpxpxxp

dxdxxpxpdxdxxxp
xxI . (3) 

It is obvious that 0),( 21ED xxI  and 0),( 21CS xxI . In these two 
measures, the equalities hold if and only if 1x  and 2x  are 
independent. The resulting mutual information measures are 
meaningful for ICA implementation. In [10], a Jensen-Shannon (JS) 
divergence measure was presented from the viewpoint of decision 
theory. The Jensen’s inequality and the Shannon entropy were 
combined. This measure was illustrated to provide the lower bound 
and the upper bound for Bayes probability of classification error. 
In this study, we are motivated to develop a new measure of 
mutual information based on the Jensen’s inequality. The so-called 
Jensen ICA algorithm can be derived. 

2.2 A New Measure Based on Jensen’s Inequality 
Let )(f  denote a convex function. Considering the joint 

distribution ),( 21 xxp  and the product of marginal distributions 
)()( 21 xpxp  as inputs of convex function, the Jensen’s inequality 

for two functions is written by 

,))()(()),((
))()(),((

2121

2121

xpxpfxxpf
xpxpxxpf

ba

ba                   (4) 

where convex coefficients meet the constraints 0},{ ba

and 1ba . As we know, the function )log(  is a popularly 
adopted convex function. We can derive the Jensen mutual 
information for measuring the dependence between variables 1x
and 2x  by 

.)))()(log()),(log(
))()(),((log(),,(

212121

212121J

dxdxxpxpxxp

xpxpxxpxxI

ba

ba         (5) 

It is straightforward to show that 0),,( 21J xxI  and equality 
holds if and only if two variables 1x  and 2x  are independent, 
i.e. )()(),( 2121 xpxpxxp . In developing ICA algorithm, it is 
reasonable to establish the Jensen mutual information by equally 
treating the contributions of ),( 21 xxp  and )()( 21 xpxp , namely 
setting 5.0ba . The mutual information measure can be 
generalized to ),,( 1J MxxI  for expressing the dependence 

measure for observation vector T
Mxx ],,[ 1x .

To illustrate the relations among the mutual information 
measures of Shannon, Euclidean distance, Cauchy-Schwartz and 
Jensen, we use a simple case with two discrete random 
variables 21, XX . The joint probability of two events BA, is
shown in Figure 1. If we consider the case of a marginal 
probability of 1X  with 7.0)(

1
APX , 3.0)(

1
BPX  and the joint 

probabilities ),(
21, AAP XX  and ),(

21, ABP XX  with values in the 
ranges from 0 to 0.7 and 0 to 0.3, respectively, the mutual 

information measures can be calculated according to different 
values of ),(

21, AAP XX  and ),(
21, ABP XX . Figure 2 shows the 

mutual information measure versus the probability 
model ),(

21, AAP XX  in the case of 5.0)(
2

APX  and 5.0)(
2

BPX .
We can see that different mutual information measures reach the 
same minimum point where the condition of independence 
between 1X  and 2X  happens. Also, among these four measures, 
the flattest curve and the steepest curve are attained by the 
Euclidean distance mutual information and the Jensen mutual 
information, respectively. This evaluation implies that the 
implementation of ICA based on the Jensen mutual information 
achieves the minimum value of mutual information efficiently. 
Comparably, a small number of iterations are needed in estimating 
Jensen ICA demixing matrix owing to the close relation between 
probability model and demixing matrix. 
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Figure 1 Probability distribution of two random variables 
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Figure 2 Comparison of four mutual information measures 

3. JENSEN ICA ALGORITHM 
In what follows, we address the Jensen ICA (J-ICA) algorithm 
based on the metric of Jensen mutual information. The basic 
assumption of ICA is that the sources should be non-Gaussian 
distributed. Here, we develop a parametric J-ICA and a 
nonparametric J-ICA by using the generalized Gaussian density 
and the Parzen window based density, respectively. 
 
3.1 Parametric J-ICA Algorithm 

First, the generalized Gaussian function [4] is applied to 
characterize the super-Gaussian or sub-Gaussian distribution for 
source signal. The multivariate distribution of My  and the 
univariate distribution of a component my  are defined by 

]|)()(|)(exp[
||
)(),|( )1/(11

2/1 yy,y T
M

cp , (6) 
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where

)1/(1

)1(
2
1

)1(
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)(c ,
2/3

2/1

)1(
2
1)1(

)1(
2
3

)(  and 

)(  is a Gamma function. These distributions are governed by 

means ),(  and variances ),( 2 . The parameter  is a 
measure of kurtosis. The case 0  represents the standard 
Gaussian distribution. In cases of 1 and 1 , the 
distribution becomes Laplacian distribution and uniform 
distribution over the unit interval, respectively. As , the 
distribution becomes a delta function centered at zero. We can 
calculate  through maximum a posteriori estimation where 
Gamma prior for  was specified [4]. Since the preprocessing 
stages of mean removal and whitening process are performed in 
ICA procedure, we practically assume zero mean and unit variance 
in generalized Gaussian distribution. 

Given an observation sequence },,{}{ 1 TtX xxx , we are 

estimating a demixed matrix TT
M

TW ],,[ 1 ww  which minimizes 
the Jensen mutual information ),,( 1J tMt xxI  accumulated 
from X . Here, the mth row of W  is denoted by mw  and the 
corresponding demixed signal is given by tmtmy xw . The 
parametric J-ICA (PJ-ICA) objective function of demixed data 

),(ICA-PJ WXI  is yielded by 

T

t

M

m m

m

m
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m

M
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T

t

M

m m
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(8)   
By taking the gradient of ),(ICA-PJ WXI  with respect to the 
demixing matrix W , we derive the ICA solution to demixing 
matrix by the iterative procedure 

),( )(
ICA-PJ

)()1(
)(

n
W

nn WXIWW n ,               (9) 
where n  is an iteration index and  is the learning rate. The 
resulting algorithm is called the parametric J-ICA because the 
independent source signals are modeled by the parametric 
distribution.

3.2 Nonparametric J-ICA Algorithm 
One popular alternative to avoiding the assumption of 

Gaussian distribution in ICA is to adopt the nonparametric 
approach. The nonparametric density using Parzen window 
estimation is attractive for data modeling because the distribution 
shape can be flexibly generated by a data-driven way. The 
nonparametric ICA has been successfully developed in [3][5]. This 

paper presents a new nonparametric ICA based on the Jensen 
mutual information. The demixed signals T

Myy ],,[ 1y  are 
characterized either by univariate distribution or multivariate 
distribution 

T

i

imm
m

T

i

i
M h

yy
Th

yp
hTh

p
11

1)}({1)(
yy

y (10)

We adopt Gaussian kernels with the univariate form and the 
multivariate form expressed by 2/2/1 2

)2()( ueu  and 
uuu

T

eM 5.02/)2()( , respectively. Given the demixed 
component tmtmy xw  and the demixed signals tt Wxy , the 
non-parametric J-ICA (NJ-ICA) objective function 

),(ICA-NJ WXI is generated by 
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(11)
The nonparametric J-ICA algorithm is then derived by taking the 
gradient of ),(ICA-NJ WXI  with respect to W  and substituting this 
gradient into the learning rule in (9). In general, it is 
straightforward to find the gradients of objective function in (8) 
and (11) with respect toW . We don’t show these equations. 

4. EXPERIMENTS 
In the experiments, we realized the proposed parametric and 
nonparametric J-ICA algorithms for blind source separation and 
speech recognition. In BSS, we used a speech signal and a music 
signal sampled from http://sound.media.mit.edu/ica-bench/. A 

22  mixing matrix ]]31.094.0[]0.6331.0[[ TTA  was 
specified to mix the source signals as shown in Figure 3. For 
comparative study, we also carried out the FastICA algorithm [7] 
and the Boscolo’s nonparametric ICA (denoted by BN-ICA) [3] 
which were based on the metrics of negentropy and MMI, 
respectively. In ICA implementation, the initial demixing matrix 

)1(W  was randomly selected. The convergence condition was set 
to be 8.0|||| )()1( nn WW . We show the waveforms of the 
demixed signals in Figure 3 and report the signal-to-interference 
ratios (SIRs) of different ICAs in Table 1. The parametric and 
nonparametric J-ICA methods obtain good demixed signals. In the 
comparison of SIR, J-ICA algorithms achieve improvement 
compared to FastICA and BN-ICA. Two J-ICA methods perform 
comparably. In the preliminary evaluation, we did find that J-ICA 
used smaller number of iterations than ICA by other mutual 
information.

Table 1 Comparison of SIR (dB) for different methods 

We also evaluated ICA performance in clustering of HMMs 
for noisy speech recognition on AURORA2 database. The set A 
with four noises (subway, babble, car and exhibition hall), six 

 FastICA BN-ICA PJ-ICA NJ-ICA 
Music -1.372 -1.659 -0.734 -0.793 
Speech -1.039 -0.802 -0.092 0.020 
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SNRs (-5, 0, 5, 10, 15 and 20 dB) and a clean condition was 
adopted. Feature vector consisted of twelve MFCCs and one log 
energy and their first derivatives. Conventionally, the multi-
conditional training was performed by putting all training data for 
four noise types and five SNRs for HMM training. However, there 
were several independent sources existed in the model parameters. 
We attempted to explore the independent sources of noise 
conditions and build several clusters of HMM parameters. In the 
training phase, we first estimated the HMM parameters for 
individual noise types and SNRs. Twenty supervectors 

},,{ 201 xxX  of HMM means for different dimensions, states 
and words were generated. We had 26 features, 16 states and 11 
words in HMM modeling. Each observed vector tx  had the 
dimension of 26*16*11. We performed ICA transformation of 
HMM mean supervectors X  and applied K-means algorithm to 
find independent HMM clusters. In the test phase, we used the first 
ten frames of each sentence and picked up the closest HMM 
cluster with the highest likelihood score. This HMM cluster was 
adopted to recognize the input sentence. 
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Figure 3 Waveforms of original signals, mixed signals and 
demixed signals using two J-ICA methods 

In Table 2, we report the recognition accuracies averaged over 
test data in different noise conditions of set A. Here, the baseline 
system is the case of without ICA transformation. Also, we 
implement HMM clustering using the principal component 
analysis (PCA) method for comparison. One cluster means that no 
HMM clustering is applied. We investigate the cases when the 
number of independent sources are two, three and four, and only 
show the results of parametric J-ICA. In this preliminary 

evaluation, the improvement of HMM clustering is not significant. 
One important reason was the incorrectness of selecting HMM 
cluster. In general, the best performance 81.48% was achieved by 
using the parametric J-ICA in case of four HMM clusters. 

Table 2 Recognition accuracies (%) of using different methods 
    1 cluster 2 clusters 3 clusters 4 clusters
Baseline 80.6 81.3 81.3 

PCA 81.3 80.8 79.7 
FastICA 79.8 81.4 81.4 
PJ-ICA 

80.4

80.9 81.4 81.5 

5. CONCLUSIONS 
We have presented a new mutual information measure for 

developing an ICA algorithm for BSS and speech recognition. 
Some existing mutual information measures were surveyed. A 
Jensen mutual information measure was derived as an objective for 
convex optimization. This mutual information was illustrated to be 
the steepest among several measures in terms of the variations of 
probability models. By considering the parametric and the 
nonparametric distributions for independent sources, we exploited 
the parametric J-ICA as well as the nonparametric J-ICA for 
finding the demixing matrix. In the experiments of separating 
music and speech signals, J-ICA algorithms obtained quite good 
performance. In the application of noisy speech recognition, we 
got slight improvement compared to other methods. In the future, 
we are performing detailed evaluation of convergence speed and 
exploring ICA algorithm for other issues of speech recognition. 
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