
USING PIECEWISE LINEAR NONLINEARITIES IN THE NATURAL GRADIENT AND
FASTICA ALGORITHMS FOR BLIND SOURCE SEPARATION

Jih-Cheng Chao

Semiconductor Group
Texas Instruments

Dallas, Texas 75243 USA

Scott C. Douglas

Department of Electrical Engineering
Southern Methodist University
Dallas, Texas 75275 USA

ABSTRACT

In both the natural gradient algorithm and the FastICA al-
gorithm for blind source separation (BSS), output nonlin-
earities for each extracted source must be selected, and the
performance of each approach can be sensitive to the cho-
sen output nonlinearity. In this paper, we propose to use
simple piecewise-linear output nonlinearities for these algo-
rithms and obtain a number of useful properties with such a
choice. For the natural gradient BSS algorithm, nonlinearity-
switching is easily achieved through a common stability
criterion that guarantees local stability for all source distribu-
tions. For the FastICA algorithm, the chosen nonlinearities
can be very close to linear, suggesting that simple (e.g. μ-law)
output companding is sufficiently nonlinear to allow separa-
tion when used with this algorithm. Simulations are provided
to verify the theoretical results.
Index Terms— Separation, multidimensional signal pro-

cessing, adaptive systems, piecewise linear approximation

1. INTRODUCTION
The goal of blind source separation (BSS) is to estimate m
distinct sources as observed in m linear signal mixtures. In
the noise-free case, a linear demixing system is sufficient
for this task, such that the problem reduces to computing
m linear combinations of the m signal mixtures to estimate
each source. Numerous procedures for adjusting the demix-
ing coefficients have been developed; however, two of the
most-popular methods are the natural gradient or INFOMAX
algorithm [1, 2] and the FastICA algorithm [3, 4]. Both of
these procedures assume that the sources are statistically-
independent and non-Gaussian and rely on output nonlinear-
ities gi(yi) for each extracted source yi(k) to obtain separa-
tion. These nonlinearities are used to compute the updated
coefficients in the separation algorithm, which require cross-
correlations of gi(yi(k)) with the estimated output signals or
the prewhitened input signal mixtures. Thus, an important
design consideration in each of these algorithms is the choice
of gi(yi) used to obtain each estimated output yi(k).
The FastICA algorithm is more powerful than the natural

gradient algorithm in terms of its separating capability when

the gi(yi) nonlinearities are fixed. The FastICA algorithm can
separate almost anymixture of source types, although the esti-
mated source quality suffers for some combinations of output
nonlinearity and source type (e.g. using gi(yi) = y3

i for im-
pulsive source distributions like speech). The natural gradient
algorithm cannot separate all source mixtures with the output
nonlinearities are fixed; as such, procedures for adapting the
output nonlinearities according to the observed output signals
may be required [5, 6, 7, 8]. While such an approach can
work, it must guarantee local stability for all possible source
distributions for some output nonlinearity within the design
family to avoid algorithm failure[7].
In this paper, we propose a simple piecewise-linear fam-

ily of output nonlinearities that is useful for both the natural
gradient BSS algorithm and the FastICA algorithm. Besides
being simple to implement, they have the following features:
1. For the natural gradient algorithm, local stability about a
separation solution largely depends on a single parameter that
can be easily selected from a single statistical quantity calcu-
lated from the estimated outputs of the system. All source dis-
tributions are separable locally with this method, thus avoid-
ing a chief limitation of this approach.
2. For the FastICA algorithm, the deviation of the output non-
linearity from linearity can be extremely small – so small,
in fact, that the signal distortion created by the nonlinearity
can be inconsequential relative to the linear source estimate
in most applications. Thus, gi(yi(k)) can be used in place of
yi(k) wherever the latter signal is needed.
As the piecewise-linear family shares similar features to

simple (μ-law) companding procedures common to certain
signal coding schemes, we also explore the performance of
these algorithms using companding nonlinearities, showing
that they can be useful in BSS contexts. Simulations are used
to verify the theoretical results derived.

2. PIECEWISE-LINEAR OUTPUT
NONLINEARITIES

The output nonlinearities considered in this paper are

gi(y) =

{
y |y| < θi

[ai(|y| − θi) + θi] sgn(y) |y| ≥ θi
(1)
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Fig. 1. Gi(y), gi(y), and g′i(y) for the proposed nonlinearity
with various values of ai (bottom) in comparison to the Huber
M -estimator cost function (top), θi = 0.7.

where θi and ai are parameters to be chosen based on the ith
extracted source output from the separation system. For com-
pleteness, we also provide the integral (cost function) Gi(y)
and derivative dgi(y)/dy of gi(y) that are important for ana-
lyzing local stability of the separation algorithms:

Gi(y) =

⎧⎪⎨
⎪⎩

y2

2
|y| < θi

1

2
aiy

2 + θi(1− ai)

[
|y| − θi

2

]
|y| ≥ θi

(2)

dgi(y)

dy
= g′i(y) =

{
1 |y| < θi

ai |y| ≥ θi
(3)

Fig. 1 shows the shapes of Gi(y), gi(y), and g′i(y) for θi =
0.7 and various values of ai. The top row shows the case
where ai = 0, in which case gi(y) becomes the influence
function of the Huber M -estimator cost [9, 10]. The bottom
row shows a family of functions for values of ai over the in-
terval [0,∞] not including ai = 1 for which Gi(y) would be
quadratic, gi(y) would be linear, and g′i(y) = 1.
In the sequel, it will be important for analytical reasons to

define the nonlinearities ĝθ(y) = gi(y) and ĝ′θ(y) = g′i(y) for
the special cases of ai = 0 and θi = θ, corresponding to the
HuberM -estimator influence function [9, 10]

3. NONLINEARITY DESIGN FOR NATURAL
GRADIENT BSS

We now explain why gi(y) in (1) is useful for the natural gra-
dient BSS algorithm. It is well-known that, for a source si(k)
with p.d.f. pi(si), a sufficient condition to guarantee that the
natural gradient algorithm in [1, 11] is locally-stable about a
separating solution for the ith extracted source is

E{si(k)gi(si(k))} − E{s2
i (k)}E{g′i(si(k))} < 0 (4)

where E{·} denotes statistical expectation. This inequality is
only satisfied for certain nonlinearities gi(y), for any given
source p.d.f. pi(si), which in our case corresponds to certain
parameter choices θi and ai. The following theorem shows
how these parameters can be designed.

Theorem 1.1: For gi(y) and g′i(y) in (1) and (3), let ai �=
1. Furthermore, assume that si(k) is continuous and non-
Gaussian-distributed. Then, there always exists a value of θi

such that

E{si(k)gi(si(k))} − E{s2
i (k)}E{g′i(si(k))} �= 0 (5)

Theorem 1.2: For gi(y) and g′i(y) in (1) and (3), let θi be
chosen such that (5) is satisfied. Then, the local stability con-
dition in (4) is satisfied if

0 ≤ ai < 1 for f̂i(θi) < 0 (6)
ai > 1 for f̂i(θi) > 0, (7)

where

f̂i(θi) = E{si(k)ĝθi
(si(k))} − E{s2

i (k)}E{ĝ′θi
(si(k))} (8)

Proof: Assume without loss of generality that si(k) has an
even-symmetric p.d.f. with unit variance. Using straightfor-
ward calculus similar to that used in the proofs in [9, 10], one
can show that

E{si(k)gi(si(k))} − E{s2
i (k)}E{g′i(si(k))}

= 2(1− ai)

∫ ∞

θ

(1 + θs− s2)pi(s)ds (9)

= (1− ai)f̂i(θi). (10)

We now leverage a result from [9, 10]: for any continuous
non-Gaussian distribution pi(s), there always exists a θi ≥ 0

such that f̂i(θi) �= 0. Therefore, if ai �= 1, Theorem 1.1
follows. Moreover, substituting (10) into (4) yields the in-
equality

(1− ai)f̂i(θi) < 0. (11)

Knowing the value of f̂i(θi), we can guarantee (11) using the
strategy in (6)–(7). Thus, Theorem 1.2 follows.

Remark #1: The above theorem suggests a straightforward
technique for using piecewise-linear nonlinearities for the nat-
ural gradient algorithm. In this technique, each nonlinearity
gi(yi) would be chosen according to the output statistics of
the ith extracted source yi(k). These methods require the cal-
culation of the following quantity, where sample averages are
used in place of expectations:

fi(θi) = E{yi(k)ĝθi
(yi(k))} − E{y2

i (k)}E{ĝ′θi
(yi(k))}. (12)

Note that if yi(k) = si(k), fi(θi) = f̂i(θi).

1814



100 200 300 400 500 600 700 800 900 1000
−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

# of snapshots N

E
{γ

 } 
 [d

B
]

Natural Gradient using cubic and tanh
Natural Gradient using adapt piecewise−linear nonlinearity

Fig. 2. E{γ} vs. number of snapshots N for the adap-
tive piecewise-linear nonlinearity algorithm with {a−, a+} =
{0, 5} and for the algorithm in [5] using y3

i and tanh(yi).

Step 1: Select θi such that fi(θi) is non-zero. From our ex-
perience with the Huber M -estimator influence function, θi

need not be carefully chosen; typical values for θi are in the
range 0.5 ≤ θi ≤ 1.

Step 2: As fi(θi) ≈ f̂i(θi) near algorithm convergence, select
ai according to the rule in (6)–(7) using fi(θi) as computed
from sample averages in place of f̂(θi). Typically, only two
possible values of ai are allowed based on the sign of fi(θi),
such as ai ∈ {0, 5} or ai ∈ {0.5, 2}. In the sequel, we refer
to these values as a− and a+, respectively.

Remark #2: The practical approach described in the above re-
mark assumes that sgn(fi(θi)) = sgn(f̂i(θi)), which is only
true if the algorithm is close to a separating solution. Thus,
the technique only assures local stability; separation of mix-
tures from an arbitrary initial demixing matrix is not guaran-
teed. This difficulty is inherent to the parallel structure of the
natural gradient algorithm no matter how the output nonlin-
earities are selected, a problem that is avoided by the FastICA
algorithm when sequential extraction is used.

4. SIMULATIONS
We now explore the performance of the natural gradient algo-
rithm using piecewise-linear nonlinearities. In our first exam-
ple, we consider mixtures of 10 sources: two binary-{±1},
two four-level {−3/

√
5, −1/

√
5, 1/

√
5, 3/

√
5}, two

uniform-[−√3,
√

3], two Laplacian, and two generated from
a particularly-difficult distribution described in [7]. This par-
ticular distribution is four-level symmetric with symbols hav-
ing the values [±A1,±A2] with A1 = 0.718, A2 = 2.7284,
Pr(|si| = A1) = 0.465 and Pr(|si| = A2) = 0.035. This
last distribution is not separable using the natural gradient
algorithm for either gi(yi) = y3

i or gi(yi) = tanh(yi), two
common choices for output nonlinearities. Each mixture was
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Fig. 3. E{γ} vs. number of snapshots N for the adaptive
piecewise-linear nonlinearity algorithm with various values
of a− and a+.

first separated by the FastICA algorithm to achieve local con-
vergence, at which point the natural gradient algorithm with
piecewise-linear nonlinearities was used. For comparison,
we also attempted a similar separation procedure using the
algorithm in [5], which switches between the output nonlin-
earities y3

i and tanh(yi) depending on their local stability
conditions as measured by yi(k) for each output. In these
simulations, the scaled natural gradient algorithm from [12]
was used in batch mode, where μ = 0.35. The average inter-
channel interference (ICI) was computed at convergence for
each algorithm, as given by

γ =
1

2m

⎛
⎝ m∑

i=1

m∑
l=1

|cil|2
max

1≤i≤m
|cil|2

+
|cil|2

max
1≤l≤m

|cli|2

⎞
⎠− 1 (13)

where C is the combined (mixing times demixing) matrix.
One hundred simulations were averaged to obtain each data
point shown.
Fig. 2 shows the average ICI as a function of data record

length N , where {a−, a+} = {0, 5} for the piecewise-linear
nonlinearity algorithm version. As can be observed, the pro-
posed method has better performance than that of the tech-
nique in [5]. This improved performance is due to the single
stability condition that governs both nonlinearities used in the
piecewise-linear algorithm. So long as fi(θi) �= 0, we can
always find a nonlinearity for yi(k) that performs separation,
as determined by the local stability of the algorithm.
Fig. 3 shows the performance of the natural gradient algo-

rithm with piecewise-linear nonlinearities for different values
of a− and a+ on the same 10-source mixture data. Clearly, a
single nonlinearity (a− = a+) is inadequate; whereas tuning
the nonlinearities to the sources allows separation. Moreover,
the proposed algorithm’s performance is not very sensitive to
the exact value of a− and a+ so long as 0 ≤ a− < 1 < a+.
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Fig. 4. E{γ} vs. number of snapshots N for small (1 − ai)
values in the FastICA algorithm.
5. PIECEWISE-LINEAR NONLINEARITIES FOR

THE FASTICA ALGORITHM
The FastICA algorithm is a useful procedure for blind source
separation that requires an output nonlinearity to be chosen.
Several possible nonlinearities have been proposed for this al-
gorithm, and all have different local stability properties. The
following theorem describes the local stability properties of
this algorithm if the piecewise-linear nonlinearity in (1) is
used, the proof of which is given in [13].

Theorem 2: For gi(y) and g′i(y) in (1) and (3), let ai �=
1. Furthermore, assume that si(k) is continuous and non-
Gaussian-distributed. Then, the local stability properties of
the single-unit FastICA algorithm with output nonlinearity
gi(y) are identical to those of the FastICA algorithm with
HuberM -estimator-based influence function analyzed in [9,
10].
The above result indicates that the separating capabilities

of FastICA with proposed nonlinearity are likely to be close
to those of FastICA with the Huber M -estimator-based in-
fluence function where ai = 0. In our exploration of this
algorithm’s performance, however, we found a rather surpris-
ing result: the algorithm can separate mixtures even if gi(yi)
is very close to a linear function.
Fig. 4 shows the average ICI for the same 10-mixture

source used in previous simulations for different numbers of
snapshots N as a function of the deviation of ai away from
unity, where θi = 1 for all output nonlinearities. As can
be seen, if (1 − ai) is greater than 10−8, the algorithm per-
forms separation successfully. Moreover, the convergence
speed of the FastICA procedure is not compromised; fewer
than 10 iterations are often required to achieve good perfor-
mance. The mean-squared error between yi(k) and gi(yi(k))
is O((1− ai)

2), implying that gi(yi(k)) can be used in place
of yi(k) in practical applications.

This result suggests that other nonlinearities commonly
used in signal processing applications can be leveraged for
FastICA-based separation. For example, μ-law companding
is a standard scheme for improving the signal-to-noise ratio
(SNR) in telephone transmission systems employing PCM.
The nonlinearity used in μ-law encoding is

gμ(y) = sgn(y)
log(1 + μ|y|)
log(1 + μ)

, (14)

where μ is the compression parameter. We have successfully
used the above μ-law nonlinearity in both 8-bit compressive
(μ = 255) and decompressive (μ = 1/255) modes within
FastICA to separate signal mixtures; typically, performance
of such schemes is more than 2dB better than that provided
by the cubic nonlinearity and about 1dB worse than the Huber
M -estimator-based methods [13].

6. CONCLUSIONS
In many blind source separation and independent component
analysis algorithms, the cost function used to measure signal
independence is a design parameter. In this paper, we have
considered piecewise-linear nonlinearities for use within the
natural gradient and FastICA algorithm. For continuous-
valued non-Gaussian-distributed signals, the nonlinearity
family provides for the local stability of the natural gradi-
ent algorithm with simple nonlinearity selection and a single
stability-monitoring condition. For the FastICA algorithm,
the piecewise-linear nonlinearity can be extremely close to
linear without any loss in separation performance.
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