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ABSTRACT

The complex fast independent component analysis (c-FastICA) algo-
rithm is one of the most popular methods for solving the ICA prob-
lem with complex-valued data. In this study, we extend the work of
Bingham and Hyvärinen [1] by deriving conditions for local stability
for the more general case of noncircular sources. We use the results
of the analysis to quantify the effects of noncircularity on the per-
formance of the algorithm using various nonlinearities and source
distributions. Simulations are presented to demonstrate the results
of our analysis.

Index Terms— Nonlinear estimation, stability

1. INTRODUCTION

Independent component analysis for separating complex-valued sig-
nals has found utility in many applications such as wireless commu-
nications [2] and radar [3], and data analysis in magnetic resonance
imaging [4] and electroencephalograph [5]. Depending on the appli-
cation, the sources may be both sub-Gaussian and super-Gaussian,
and specifically in the complex domain, can have circular—rotation
invariant—and noncircular—rotation variant distributions. Current
work dealing with noncircular sources is given in [6, 7] where complex-
valued kurtosis is used as the cost function. Another approach, the
strong-uncorrelating transform (SUT) [8], uses second-order statis-
tical information through the covariance and pseudo-covariance ma-
trices and performs ICA by joint diagonalization of these matrices.
Although efficient, the algorithm restricts the sources to be noncir-
cular with distinct spectra of the pseudo-covariance matrix.

The complex FastICA (c-FastICA) algorithm of Bingham and
Hyvärinen is one of the most popular methods for performing ICA
when dealing with complex-valued sources. The algorithm does not
restrict the cost to kurtosis, as in [6, 7], but uses general nonlin-
earities that are less susceptible to outliers. In [1], authors present
a fixed-point algorithm and derive the conditions for local stability
assuming circular sources.

In this study, we provide a rigorous local stability analysis of
the c-FastICA algorithm without the circularity constraint, thereby
allowing us to quantify the effects of noncircularity on stability. We
find that the performance of c-FastICA is affected more severely for
sub-Gaussian sources than super-Gaussian—which we show through
analysis and simulations.

2. COMPLEX ICA

2.1. Complex preliminaries

A complex variable z is defined in terms of two real variables zR

and zI as z = zR + jzI with arg(z) = atan(zI/zR). Statistics of

a complex random vector x = xR + jxI are defined by the joint
probability density function (pdf) px(xR,xI). The expectation of a
complex random vector x is then given with respect to this pdf and
is written as E{x} = E{xR}+ jE{xI}.

The covariance matrix is written as cov(x) = E{(x−E{x})(x−
E{x})H} where H denotes conjugate transpose and the pseudo-
covariance matrix is defined as pcov(x) = E{(x − E{x})(x −
E{x})T } where T denotes the transpose. These two quantities to-
gether define the second-order statistics of a complex random vector,
and the random vector is second-order circular if pcov(x) = 0. A
stronger definition of circularity is based on the pdf of the complex
random variable such that for any α, the pdf of x and ejαx are the
same [9]. The kurtosis of a zero mean complex random variable, of-
ten used as a quantitative measure of non-Gaussianity, is defined in

[1] as kurt(y) = E{|y|4} − 2
(
E{|y|2})2 − ∣∣E{y2}∣∣2 and reduces

to
kurtc(y) = E{|y|4} − 2 (1)

when y is circular with unit variance. We use the following defini-
tions of complex random vectors

z = [z1, z2, . . . , zN ]T ∈ C
N

z̃ = [z1, z
∗
1 , . . . , zN , z∗

N ]T ∈ C
2N

(2)

and M ∈ C
N×N and M̃ ∈ C

2N×2N for complex matrices through-
out this work where ∗ denotes complex conjugation. These forms
will be used when we define the complex gradient and Hessian of
non-analytic functions as defined in [10].

2.2. ICA in the complex domain

In ICA, the observed data z are typically expressed as a linear combi-
nation of latent variables such that z = As where s = [s1, . . . , sN ]T

is the column vector of latent sources, z = [z1, . . . , zN ]T is the col-
umn vector of observed mixtures, and matrix A is the N ×N mix-
ing matrix assumed invertible. We assume that the sources and mix-
ing matrix are complex valued. ICA then identifies the statistically
independent sources given the observed mixtures typically by esti-
mating a demixing matrix W so that the source estimates become
Wz. We assume without loss of generality that the sources have
zero mean and unit variance, i.e., E{ssH} = I. We do not, however,
assume circular sources, hence E{ssT } �= 0. One can recover the
original sources up to a complex scaling and permutation provided
that at most one source is Gaussian.

A preliminary sphering or whitening of z is first performed through
the transform V, resulting in

x = Vz = VAs ≡ Bs (3)

where E{xxH} = I and B ≡ VA. We find that the new mix-
ing matrix, B, is unitary due to E{xxH} = BE{ssH}BH = I.
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Note however that the whitening step does not decorrelate the com-
ponents, i.e., the pseudo-covariance matrix is not diagonalized as is
done in the SUT [8]. We estimate each source, yk, separately by
finding a vector w such that

yk = wH
k x = wH

k Bs = qH
k s (4)

where wk is a column of W and qk = [0, . . . , qk, 0, . . .]T when
WH = B, i.e., the optimal solution. Constraining the source esti-
mates such that E{yky∗

k} = 1, also constrains the weights to ||w||2 = 1,
qk = [0, . . . , ejθ, 0, . . .]T , and W to a unitary matrix due to the
whitening transform.

3. STABILITY ANALYSIS

The c-FastICA cost function, defined in [1], is

J(w) = E

{
G

(∣∣∣wHx
∣∣∣2
)}

(5)

where G : R → R is a smooth even function and w ∈ C
N with

||w|| = 1. The resulting optimization problem is formulated as

wopt = arg max
||w||2=1

J(w). (6)

Several choices for G in (5) were proposed [1] and are: G1 =√
a1 + y, G2 = log(a1 + y), and G3 = 1

2
y2, where a1 is an

arbitrary constant and is chosen as 0.1 in this work as in [1]. The
functions G1 and G2 are slowly growing functions providing robust
estimators, and G3 is motivated by kurtosis given in (1). Note that
the cost function given in (5) does not utilize the phase of the sources
indicating that any noncircularity information is lost as is the case of
c-FastICA.

3.1. Stability conditions

We now present the conditions required for the optimal solution to
be a stable point, i.e., the cost function (5) is a local maximum or
minimum. We derive the conditions for local stability at the opti-
mal solution similar to that of [1] except for two significant differ-
ences: 1) we do not assume circular sources and 2) we work in the
complex domain using the definitions of the complex derivative of
non-analytic functions found in [11, 12] and Taylor series expansion
shown in [10].

The major result of this section, derived in Appendix A.1 and
based on a second-order analysis, is that a local minimum (resp. max-
imum) is achieved when estimating source one given sources
(i = 2, 3, . . . , N ) when

E{g(|s1|2) + |s1|2g′(|s1|2) − |s1|2g(|s1|2)}
± |E{s2

i }β| > 0 (resp. < 0) (7)

where we have defined β = E{g′(|s1|2)s∗21 ej2θ} and used the no-
tation g(z) = dG(z)/dz and g′(z) = dg(z)/dz. Note that in (7),
source one was chosen as an example to show the source to source
stability dependence and must be true for all source combinations.
For circular sources, the expression reduces to

E
{
g(|s1|2) + |s1|2g′(|s1|2)− |s1|2g(|s1|2)

}
> 0 (resp. < 0)

(8)
which coincides with the result given in [1] since E{s2

i } = 0. This
result for circular sources shows that stability is guaranteed as long
as one chooses to maximize or minimize the cost depending on the
sign of equation (8). However for the noncircular case, the last term
in (7) is not zero indicating that stability is not guaranteed since the
inequality must be satisfied for both the plus and minus values.

3.2. Stability examples

Consider the case of applying the nonlinearity G3 = 1
2
y2, which is

motivated by kurtosis (1), and assume circular sources. Substituting
G3 into (8) results in 2−E{|s1|4} > 0 or kurtc(s1) < 0 , which im-
plies that we minimize the cost for sub-Gaussian sources and maxi-
mize for super-Gaussian sources. Here, we define sub/super-Gaussianity
with respect to the kurtosis of the sources.

Now let us examine stability when the sources are noncircular
and again using the nonlinearity G3. We first note that the term
|E{s2

i }β| in (7) is not zero and expands to |E{s2
i }E{s∗21 }|, which,

due to the unit variance constraint, 0 ≤ |E{s2
i }| ≤ 1. Equation (7)

now becomes

kurtc(s1)±
∣∣E{s2

i }E{s∗21 }
∣∣ < 0 (resp. > 0) (9)

implying that instability may result if we are minimizing or maxi-
mizing the cost based on the sign of kurtosis.

We illustrate the linear relationship shown in equation (9), for
nonlinearity G3, by plotting |E{s2

i s
∗2
1 }| versus kurtc(s1) in Figure

1. Figure 1 illustrates regions of instability as the sources become
noncircular, i.e., |E{s2

i s
∗2
1 }| → 1. Note that for simplicity we as-

sume E{s2
i } = 1 and only vary E{s∗21 }. What we glean from the

figure is that the space of sub-Gaussian distributions for signals of
engineering interest, kurtc(ssub) ∈ [−1, 0), stability is always af-
fected by noncircularity. We note that these signals of engineering
interest include: quadrature amplitude modulation (QAM), binary
phase shift keying (BPSK), functional magnetic resonance data, and
complex sinusoids. However, super-Gaussian sources, kurtc(ssuper) ∈
(0,∞), are affected only if the kurtosis value is in the narrow range
of zero to one.

The stability results for nonlinearities G1 and G2 are also shown
in Figure 1. However since closed form solutions do not exist for the
expectations in equation (7), numerical results were calculated using
sources realized by the bivariate generalized Gaussian distribution
(ggd) described in Appendix A.2. As seen in the figure, the regions
of instability for G1 and G2 are marginally larger than that of G3.
We conclude from this section that the c-FastICA algorithm will pro-
vide good separation performance with noncircular sources specif-
ically for super-Gaussian sources, however performance is limited
for the sub-Gaussian case.

As a final example, we use complex BPSK sources that are in-
trinsically noncircular, |E{s2}| = 1, and sub-Gaussian, kurtc(s) =
−1, with probability mass function (pmf)

pbpsk(s) = 0.5δ(s− μ) + 0.5δ(s + μ) (10)

where μ is one point in the two-point constellation, i.e., μ = cos(θ)+
j sin(θ), and is on the unit circle due to the unit variance constraint.
Using (10), we are able to get a closed form solution to equation
(7) for all three nonlinearities resulting in 1 ± 1 > 0. This result
indicates that c-FastICA will be unstable when applied to BPSK
sources—we do not show the derivation here due to space limita-
tions.

4. SIMULATIONS

Our goal in this section is to demonstrate the results of our stability
analysis, specifically those shown in Figure 1, by quantifying perfor-
mance of c-FastICA with varying noncircularity. For our simulations
we use the Amari index, IA ∈ [0, 1], defined in [13] as our per-
formance measure where smaller values indicate better performance
with zero indicating perfect separation. Eight sources are used with
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Fig. 1. Plot of |E{s∗21 }E{s2
i }|, noncircularity measure, versus kur-

tosis (1), with the areas of instability noted for three nonlinearities.

(a) Sub-Gaussian sources (b) Super-Gaussian

Fig. 2. Plot of separation performance, 10 log IA, versus noncircu-
larity measure η.

results averaged over 100 runs. Our sources are realizations of the
bivariate ggd distribution outlined in Appendix A.2. Sources are
made noncircular by varying the real to imaginary asymmetry de-
fined by η =

√
E{(sR)2}/E{(sI)2}, i.e., the ratio of the standard

deviations of the real and imaginary parts. We compare the results
of c-FastICA with more recent algorithms that specifically address
noncircularity and use kurtosis as the cost function. These are the
complex fixed point (CFP) [6] and kurtosis maximization (KM) [7]
algorithms.

Figure 2 highlights the results of our stability analysis by depict-
ing the performance versus noncircularity measure η for c-FastICA
using G1 and G3. Figure 2(a) displays the results with sub-Gaussian
sources illustrating that as the sources become more noncircular, i.e.,
η ≥ 4, c-FastICA fails to separate as predicted by Figure 1. As ex-
pected, we see similar performance with KM and CFP due to both
using kurtosis as the cost function and explicitly taking noncircular-
ity into account. Figure 2(b) shows the results with super-Gaussian
sources with very low kurtosis values, kurtc(s) ∈ [.25, 1). Again
c-FastICA degrades as η increases. We also see how c-FastICA out-
performs the kurtosis based algorithms KM and CFP when circular,
i.e., η = 1. This result indicates the advantage of being able to select
a nonlinearity based on source statistics.

5. CONCLUSIONS

In this paper we provide a rigorous stability analysis of the c-FastICA
algorithm to the more general case of noncircular sources. We use
this analysis to quantify the effects of noncircularity on performance
and find that c-FastICA’s performance is degraded more severely
with sub-Gaussian than with super-Gaussian sources. We show this

result through analysis and simulations.

A. APPENDIX

A.1. Stability conditions of cost function (5)

We make the orthogonal change of coordinates q = AHw resulting
in the cost function J(q) = E{G(yy∗)} where y = wHx = qHs.
Without loss of generality, we assume an optimal solution for s1 at

q1 = [ejθ, 0, . . . ]T where θ points in the direction of the principal
component of s1 as shown in [14]. If s1 is circular then θ is an
arbitrary phase shift.

We seek a Taylor series expansion of J around the optimal solu-
tion q1, but unlike the approach in [1] using real-valued vectors, we
choose to work in the less-cumbersome complex domain. The cost
J is not analytic in q but is analytic in q and q∗ independently. Be-
cause of this condition, we apply Wirtinger calculus [11, 12, 7] and
the partial derivative can be found directly by differentiating with
respect to q while treating q∗ as a constant resulting in

∂J

∂qi
= g(yy∗)ys∗i

where g is the derivative of G and we used the chain rule and ∂q∗/∂q =
0. The second derivatives can be found similarly as

aik = E

{
∂2J

∂q∗i ∂qk

}
= E{sis

∗
k

[
g′(yy∗)yy∗ + g(yy∗)

]}
bik = E

{
∂2J

∂q∗i ∂q∗k

}
= E{siskg′(yy∗)y∗2}

cik = E

{
∂2J

∂qi∂qk

}
= b∗ik

where g′ is the derivative of g. We use the above derivative defini-
tions and the complex gradient and Hessian defined in [10] to write
the gradient as

∇̃qJ = E

⎛
⎜⎜⎜⎜⎜⎜⎝

∂J
∂q1
∂J
∂q∗

1
...

∂J
∂qN
∂J

∂q∗
N

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

E{g(yy∗)s∗1y}
E{g(yy∗)s1y

∗}
...

E{g(yy∗)s∗Ny}
E{g(yy∗)sNy∗}

⎞
⎟⎟⎟⎟⎠ (11)

and Hessian

H̃qJ = E

{
∂2J

∂q̃∗∂q̃T

}

=

⎛
⎜⎜⎝

a11 b11 a12 b12 . . . a1N b1N

b∗11 a11 b∗12 a12 . . . b∗iN a1N

...
...

...
...

. . .
...

...
b∗N1 aN1 b∗N2 aN2 . . . b∗NN aNN

⎞
⎟⎟⎠(12)

where the vector format is defined in (2). Evaluating the gradient
(11) and Hessian (12) at q1 and using the whiteness and indepen-
dence of s we find

∇̃qJ(q1) =

⎛
⎜⎜⎜⎜⎜⎝

E{g(|s1|2)|s1|2}e−jθ

E{g(|s1|2)|s1|2}ejθ

0
...
0

⎞
⎟⎟⎟⎟⎟⎠
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and

H̃qJ(q1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 b11 0 . . . 0
b∗11 a11 0 . . . 0

0 0 B2 0
...

...
...

...
. . . 0

0 0 0 . . . BN

⎞
⎟⎟⎟⎟⎟⎟⎠

(13)

where at the optimal solution a11 = E{|s1|4g′(|s1|2)+|s1|2g(|s1|2)},

b11 = E{|s1|4g′(|s1|2)ej2θ}, and Bi is a 2 × 2 matrix defined as

Bi =

(
γ E{s2

i }β
E{s∗2i }β∗ γ

)
where γ = E{g′(|s1|2)|s1|2 +

g(|s1|2)} and β = E{g′(|s1|2)ej2θs∗21 }.
We now make a small perturbation, ε = [ε1, ε2, . . . , εN ], around

the optimal solution q1 using the complex Taylor series expansion
derived in [10] as

J(q1 + ε) = J(q1) + ε̃T ∇̃qJ(q1) +
1

2
ε̃HH̃qJ(q1)ε̃ + o(||ε||2)

= J(q1) + E{g(|s1|2)|s1|2}(ε1e
−jθ + ε∗1e

jθ) +

|ε1|2a11 +
1

2
(ε2

1b
∗
11 + ε∗21 b11) + γ

N∑
i>1

|εi|2 +

1

2
β

N∑
i>1

ε2
i E{s2

i }+
1

2
β∗

N∑
i>1

ε2
i E{s∗2i }+ o(||ε||2).

Noting that ||q1 + ε||2 = 1+ e−jθε1 + ejθε∗1 +
∑N

i=1 |εi|2 and the
constraint, ||q|| = 1, we obtain

e−jθε1 + ejθε∗1 = −
N∑

i=1

|εi|2. (14)

Substituting (14) into the Taylor series expansion we get

J(q1+ε) = J(q1)+|ε1|2E{|s1|4g′(|s1|2)}+1

2
ε2
1b

∗
11+

1

2
ε∗21 b11 +

E{|s1|2g′(|s1|2) + g(|s1|2)− g(|s1|2)|s1|2}
N∑

i>1

|εi|2 +

1

2

N∑
i>1

(
ε2

i E{s2
i }β∗ + ε∗2i E{s∗2i }β

)
+ o(||ε||2)

where the term |ε1|2 is of order o(||ε||2) according to (14) and can
be neglected, resulting in

J(q1 + ε) = J(q1) + E{|s1|2g′(|s1|2) + g(|s1|2)−

g(|s1|2)|s1|2}
N∑

i>1

|εi|2 +

N∑
i>1

|εi|2|E{s2
i }|β| cos(ϕi) + o(||ε||2) (15)

where ϕi = arg(ε2
i )+arg(E{s2

i })+arg(β) is some arbitrary phase

shift and we used the identity z + z∗ = 2zR = 2|z| cos[arg(z)] in
the last line. The term cos(ϕi) ∈ [−1, 1] for any perturbation εi,
resulting in the conditions for a local minimum (resp. maximum) as

E{g(|s1|2) + |s1|2g′(|s1|2) − |s1|2g(|s1|2)}
± |E{s2

i }β| > 0 (resp. < 0)

which must be satisfied for each source si, where i = [2, 3, . . . , N ].
The result outlined in (15) is identical to that in [1] for circular
sources, i.e., the term E{s2

i } = 0 when source si is circular.

A.2. Generalized Gaussian distribution

We modify the bivariate ggd model from [15] for the noncircular unit
variance case as

pggd(sR, sI , p, m) =
Γ(4/p)p

2πΓ(2/p)2
√

1−m2
e
−

[
(sR)2

m+1 +
(sI )2

1−m

]p/2
γp/2

where p is the shape parameter, γ =
[

Γ(4/p)
Γ(2/p)

]
, m = E{s2} and

E{ss∗} = 1. By adjusting the shape parameter, we can gener-
ate Gaussian variates with p = 2, sub-Gaussian with p > 2, and
super-Gaussian with 0 < p < 2. To generate these complex ran-
dom variables in Matlab, we modify the approach in [16] for real-

valued variates to s = gamrnd(2/p, 1)1/p exp(j2π rand) where
gamrnd(2/p, b) generates gamma random variables with shape pa-
rameter 2/p and rand generates uniformly distributed variables ∈
[0, 1]. The sources are then divided by their standard deviations to
yield unit variance.
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