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ABSTRACT

The desirable asymptotic optimality properties of the maximum like-
lihood (ML) estimator make it an attractive solution for performing
independent component analysis (ICA) as well. Wirtinger calculus
is shown to provide an attractive framework for the derivation and
analysis of complex-valued algorithms using nonlinear functions,
and hence of ICA algorithms as well. Local stability analysis of
complex ICA based on ML presents a unique challenge, since in ad-
dition to the need for computation of derivatives, the Hessian of a
matrix quantity needs to be evaluated, and for the complex case, it
assumes a significantly more complicated form than the real-valued
case. In this paper, we demonstrate how Wirtinger calculus allows
the use of an elegant approach proposed by Amari et al. [5] in the
analysis, thus enabling the derivation of the conditions for local sta-
bility of complex ML ICA. We further study the implications of the
conditions for a generalized Gaussian density model.

Index Terms— Independent component analysis, Maximum
likelihood, Local stability, Complex analysis

1. INTRODUCTION

Independent component analysis (ICA) for separating complex-
valued signals is needed in a number of applications such as medical
image analysis, radar, and communications. In ICA, the observed
data are typically expressed as a linear combination of independent
latent variables such that x = As where s = [s1, s2, . . . , sN ]T is
the vector of sources, x = [x1, x2, . . . , xN ]T is the vector of ob-
served random variables, and A is the mixing matrix. We consider
the simple case where the number of independent variables is the
same as the number of observed mixtures. The main task of the
ICA problem is to estimate a separating matrix W that yields the
independent components through ŝ = Wx.

A number of approaches have been proposed to solve the com-
plex ICA problem[1],[3],[6],[10],[12]. Maximum likelihood estima-
tion offers the desirable large sample optimality properties and is an
attractive solution for the ICA problem as it has been for many other
estimation problems. Since the likelihood function is real valued and
not complex-differentiable, a common approach for deriving the up-
date algorithm and its analysis has been to transform the complex
optimization problem to the real domain, which increases the di-
mensionality of the problem and usually leads to complicated forms.
In addition, in order to study the local stability property of the ML
ICA algorithms, one needs to calculate the complex Hessians of the
likelihood function as a function of the parameter, which is a ma-
trix quantity. Amari et al. [5] proposed an elegant approach to the
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problem through the definition of an invariant quantity that can be
used for second-order analysis of ML ICA for the real case. In this
paper, we show how Wirtinger calculus [15] allows one to extend
this approach for the analysis of ML ICA in the complex domain,
and more generally, for second-order study of matrix variables for
complex-valued signal processing.

In [2], we have shown how to derive the complex ML ICA al-
gorithm using Wirtinger calculus [15] without the use of any real-
complex mappings. In this paper, we use the Wirtinger calculus to
derive the complex natural gradient ML ICA algorithm. By extend-
ing the results given in [5] to the complex case, we show how to cal-
culate the second-order differentials of the likelihood function where
the fourth-rank tensor is involved. The resulting stability conditions
are studied using a generalized Gaussian source model that allows
the sources to assume both super-Gaussian and sub-Gaussian distri-
bution through the control of a shape parameter.

2. COMPLEX GRADIENTS, BRANDWOOD’S RESULT
ANDWIRTINGER CALCULUS

In this section, we review results on complex gradients, which have
not been consistently used in the literature and introduce the proper
definitions for vector and matrix gradients. In particular, we under-
line the fact that complex gradient computations can be greatly sim-
plified and obtained in a fashion similar to the real-valued gradients.

We are interested in functions g(·) that are cost functions and
thus consider the special case of g: C × C → R, for which Brand-
wood states the following result [7]:

Let f : R× R → R be a function of real variables x and y such
that g(z, z∗) = f(x, y), where z = x + iy and i =

√−1. Then,
1) The partial derivative ∂g/∂z (treating z∗ as a constant in

g) gives the same result as 1/2 (∂f/∂x− i∂f/∂y) on substituting
for z. Similarly, ∂g/∂z∗ = 1/2 (∂f/∂x + i∂f/∂y).

2) A necessary and sufficient condition for f to have a sta-
tionary point is that ∂g/∂z = 0. Similarly, ∂g/∂z∗ = 0 is also a
necessary and sufficient condition.

The two complex symbolic derivatives are actually defined much
earlier and known as Wirtinger calculus[15] and, to date, the result
has been primarily recognized in the German-speaking engineering
community. It has been shown that as long as the real and imagi-
nary parts of a function f are real-differentiable, the two Wirtinger
derivatives also exist[15]. As a simple example, consider the func-
tion g(z, z∗) = zz∗ = |z|2 = x2 + y2 = f(x, y). We have
1/2 (∂f/∂x + i∂f/∂y) = x + iy = z, which we can also evaluate
as ∂g/∂z∗ = z, i.e., by treating z as a constant in g when calculating
the partial derivative.

The results above can easily be extended to vector and matrix
gradients. We define 〈· , ·〉 as the scalar inner product between
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two matrices W and V as 〈W ,V〉 = Trace(VHW) so that
〈W ,W〉 = ‖W‖2Fro, where the subscript Fro denotes the Frobe-
nius norm. For vectors, the definition simplifies to 〈w ,v〉 = wHv.

We define ∇z = [∂/∂z1, ∂/∂z2, . . . , ∂/∂zN ]T for vector z =
[z1, z2, . . . , zN ]T with zk = xk + jyk in order to write

�g = 〈�z,∇z∗g〉+ 〈�z∗,∇zg〉 = 2Re{�z, 〈∇z∗g〉} (1)

for a function g(z, z∗) : C
N × C

N → R. It is also important to re-
iterate that the gradient ∇z∗g defines the direction of the maximum
rate of change in g(·, ·) with respect to z, not∇zg.

The extension from the vector gradient to matrix gradient is
straightforward. If the function g(W,W∗) : C

N×N×C
N×N → R

is real-differentiable, we then have the first-order expansion

�g =

〈
�W,

∂g

∂W∗

〉
+

〈
�W∗,

∂g

∂W

〉

where ∂g/∂W is anN×N matrix whose (i, j)th entry is the partial
derivative of g with respect to wij . By arranging the matrix gradient
into a vector and by using the Cauchy-Schwarz inequality, it is easy
to show that the matrix gradient ∂g/∂W∗ defines the direction of
the maximum rate of change g with respect toW.

Based on (1), similar to a scalar function of two real vectors, we
can write the second-order Taylor expansion of g(z, z∗)

�g = 〈�z,∇z∗g〉+ 〈�z∗,∇zg〉+
1

2

〈
∂g

∂z∂zT
�z,�z∗

〉

+
1

2

〈
∂g

∂z∗∂zH
�z∗,�z

〉
+

〈
∂g

∂z∂zH
�z∗,�z∗

〉
(2)

as shown in [4], which will be used in the analysis results of this
paper as well.

3. COMPLEX MAXIMUM LIKELIHOOD ICA

We first briefly introduce our notation and the relevant preliminaries
for application to ICA. The probability density function (pdf) of a
complex random variableX = Xre + iXim is defined as pX(x) ≡
pXreXim(xre, xim). Expectation of g(X) is given by E{g(X)} =∫ ∫

g(xre + ixim)pX(x)dxredxim for any measurable function g :
C → C. A complex random variableX is circular in the strict-sense
ifX andXejθ have the same pdf.

The traditional ICA problem is to determine a weight matrix
W such that y = Wx approximates the source s subject to the
permutation and scaling ambiguity. To write the likelihood, we need
to consider the mapping C

N → R
2N such that ȳ = W̄x̄ = s̄ where

ȳ = [yT
rey

T
im]T , W̄ =

[
Wre −Wim

Wim Wre

]
, x̄ = [xT

rex
T
im]T and

s̄ = [sT
res

T
im]T .

Given T independent samples x(t), we write the log-likelihood
function as[5]

l′(y,W) = log |det(W̄)|+
m∑

k=1

log ps̄k (ȳk)

where s̄k is the kth source ∈ R
2 with density denoted by pk. Max-

imization of l′ is equivalent to minimization of l where l = −l′.
Simple algebraic and differential calculus yields

dl = −tr(dW̄W̄−1) + ψ̄T (ȳ)dȳ (3)

where ψ̄(ȳ) is a 2N × 1 column vector with components ψ̄(ȳ) =

−[ ∂ log p1(y1)
∂y1,re

· · · ∂ log pN (yN )
∂yN,re

∂ log p1(y1)
∂y1,im

· · · ∂ log pN (yN )
∂yN,im

]. We
write log ps̄(ȳ) = log ps(y, y∗) and using Wirtinger calculus, it is
straightforward to show

ψ̄T (ȳ)dȳ = ψT (y,y∗)dy + ψH(y,y∗)dy∗

where ψ(y,y∗) is an N × 1 column vector with complex compo-
nents

ψk(yk, y∗
k) = −∂ log pk(yk, y∗

k)

∂yk
.

Defining a 2N × 2N matrix P = 1
2

[
I iI
iI I

]
, we obtain

tr(dW̄W̄−1) = tr(dW̄PP−1W̄−1)

= tr

{[
dW∗ idW
idW∗ dW

]
·
[

W∗ iW
iW∗ W

]−1
}

= tr(dWW−1) + tr(dW∗W−∗)

Therefore we can write (3) as

dl = −tr(dWW−1)− tr(dW∗W−∗) +

ψT (y,y∗)dy + ψH(y,y∗)dy∗ (4)

Using y = Wx and defining dZ = (dW)W−1, we obtain

dy = (dW)x = dW(W−1)y = dZy, dy∗ = dZ∗y∗.

By treating W as a constant matrix, the differential matrix dZ has
components dzij that are linear combinations of dwij and is a non-
integrable differential form. However, this transformation greatly
simplifies the expression for the Taylor series expansion without
changing the function value. It also provides an elegant approach
for the derivation of the natural gradient update for ML ICA[5]. Us-
ing this transformation, we can write (4) as

dl = −tr(dZ)− tr(dZ∗) + ψT (y,y∗)dZy +

ψH(y,y∗)dZ∗y∗

Therefore, the gradient update rule for Z is given by

�Z = −μ
∂l

∂Z∗ = μ[I− ψ∗(y,y∗)yH ]

which is equivalent to

�W = μ[I− ψ∗(y,y∗)yH ]W (5)

by using dZ = (dW)W−1.
Thus the complex score function is defined as ψ∗(y,y∗), as in

[2], which takes a form very similar to the real case [5], but with the
difference that in the complex case the entries in the score function
are defined using Wirtinger derivatives.

4. STABILITY OF THE COMPLEX ML ICA UPDATE

The stationary point of the update rule given in (5) satisfies

E{I− ψ∗(y,y∗)yH} = 0. (6)

By the definition of the ICA problem, it is easy to see that W =
A−1 is the solution of (6). To ensure that the ML solution is asymp-
totically stable, we need to calculate the Hessian term d2l since
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I − ψ(y,y∗)∗yH is derived from the gradient dl. From (2), the
equilibrium is stable if and only if the expectation of

d2l =
1

2

( ∑ ∂l

∂wij∂wkl
dwijdwkl +

∑ ∂l

∂w∗
ij∂w∗

kl

dw∗
ijdw∗

kl

)

+
∑ ∂l

∂wij∂w∗
kl

dwijdw∗
kl

is positive definite[5, 14]. To derive the stability conditions, we can
again work on differentials dzij instead of working with dwij which
helps circumvent the difficulty of working with tensors.

The stability conditions are given in the following theorem. To
state the theorem, we define

αi = E{y2
i }, βi = E{|yi|2},

γi = E{ηi(yi, y
∗
i )}, δi = E{θi(yi, y

∗
i )},

ui = E{y2
i ηi(yi, y

∗
i )}, vi = E{|yi|2θi(yi, y

∗
i )}, (7)

where η = ∂ψ/∂y and θ = ∂ψ/∂y∗.

Theorem 1 The separating solution is a stable equilibrium of the
update equation given in (5), if and only if

vi > 0 (8)
v2

i > |ui + 1|2 (9)
βjδi > 0 (10)

(βiδj)
2 − 1− |αiγj |2

βiδj
+

(βjδi)
2 − 1− |αjγi|2

βjδi
> 0 (11)

(βiδjβjδi − 1)2 + |αiγj |2|αjγi|2 −
(βjδi)

2|αiγj |2 − (βiδj)
2|αjγi|2 − 2Re

(
αiγjαjγi

)
> 0 (12)

for all i, j such that i �= j.

The proof of this theorem is given in Appendix A. If all the
sources are second-order circular, we have αi = 0, and the last two
sufficient stability conditions can be further simplified as

(βiδj)
2 − 1

βiδj
+

(βjδi)
2 − 1

βjδi
> 0 (13)

(βiδjβjδi − 1)2 > 0 (14)

for all i, j such that i �= j. Compared with the real stability con-
ditions given in [5], the stability conditions for complex ML ICA
assume more complicated forms even for the circular case. When
the sources are noncircular, we have |αi| > 0, thus the conditions
are obviously more difficult to be satisfied if we compare the last two
stability conditions for both cases.

IfW is constrained to be a unitary matrix, it can be shown that
the stability conditions will be greatly simplified as shown for the
real case [11].

5. EXAMPLES

As an example, consider the case where the source densities take the
form of bivariate generalized Gaussian distribution (GGD), which
can be written as

pGGD(s) = a exp(−[γ(s̄− μ)T K−1(s̄− μ)]c)

where s̄ = [sresim]T is the mapping of one complex source s in
R

2, a = cγ

πΓ(1/c)|K|1/2 , γ = Γ(2/c)
2Γ(1/c)

, K is the covariance matrix ,

Fig. 1. The stability indicator δ as a function of shape parameter c

μ is the mean vector, and Γ(·) is the Gamma function. The bivari-
ate GGD model is completely determined by the shape parameter
c, covariance matrix K and μ. By changing the shape parameter c,
we can obtain a family of distributions, which can vary from bivari-
ate Laplacian to bivariate normal for small c values, and to bivariate
uniform as c goes to infinity.

Let us assume that the sources are circular and have zero mean
to write

pGGD,circ(s̄) = a exp(−[2γss∗]c)

since we haveK = 1/2I. Therefore we can easily evaluate

ψ(s, s∗) = − log p(s, s∗)
∂s

= c · [2γss∗]c−1 · 2γs∗,

η(s, s∗) =
∂ψ

∂s
= c(c− 1)(2γ)c(ss∗)c−2(s∗)2,

θ(s, s∗) =
∂ψ

∂s∗
= c2(2γ)c(ss∗)c−1.

An important indicator of stability, δ = E{θ(y, y∗)}, is plotted in
Fig. 1 as a function of the shape parameter c. Since βi = 1, the
condition βiδj > 1 is satisfied for all c �= 1, i.e., for all nongaussian
circular GGDs. Hence, the stability conditions given in (10) – (14)
are also satisfied.

The two quantities defined in (7) can be calculated as

u =

∫ ∫
s2η(s, s∗)p(s, s∗)dsredsim = c− 1,

v =

∫ ∫
ss∗θ(s, s∗)p(s, s∗)dsredsim = c.

Therefore the stability condition given in (8) is also satisfied. How-
ever, (9) is not satisfied since v = u + 1. Thus, the complex ML
ICA algorithm does not satisfy the stability conditions completely
for this case. However, note that the first quadratic term in (15) is
positive definite and the second quadratic term can be calculated as
c(Re{dz2

ii + |dzii|2}). For any complex number z, it is true that
|z| ≥ Re{z}. Therefore E{d2l} might take the problematic value,
which is zero, only when dZ, or actually I−ψ∗(y,y∗)yH , is a diag-
onal matrix with pure imaginary numbers as the diagonal elements.

When the sources are noncircular, we have |αi| > 0, thus the
conditions are obviously more difficult to be satisfied if we compare
the last two stability conditions for both cases. This is not surprising
since for the real case, it has been shown that the stability conditions
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are not satisfied for some small value of c even when the optimal
score function matched to the source distribution is used [8]. Our
numerical studies confirm these observations, which we could not
include in this paper due to space limitations.

6. CONCLUSIONS

We studied the local stability of complex ML ICA algorithm and
derived the sufficient conditions. We demonstrate how to derive and
analyze complex ICA algorithm usingWirtinger calculus without the
need for the commonly used real-complex mappings. We also study
the implication of the stability condition for the class of generalized
Gaussian probability density functions.

A. APPENDIX

Proof of Theorem 1

Proof Given
dl = −tr(dZ)− tr(dZ∗) + ψT (y,y∗)dZy + ψH(y,y∗)dZ∗y∗

as a function of (Z, Z∗, y, y∗), we have ∂(tr(dZ))/∂Z = 0,
∂(tr(dZ∗))/∂Z∗ = 0, therefore the second-order differential can be written as

d
2
l = d(ψ

T
(y,y

∗
)dZy + ψ

H
(y,y

∗
)dZ

∗
y
∗
)

= 2Re{d(ψT
(y,y

∗
)dZy)}

= 2Re{yT
dZ

T
η(y,y

∗
)dy + y

T
dZ

T
θ(y,y

∗
)dy

∗
+

ψ
T

(y,y
∗
)dZdy}

= 2Re{yT
dZ

T
η(y,y

∗
)dZy + y

T
dZ

T
θ(y,y

∗
)dZ

∗
y
∗

+

ψ
T

(y,y
∗
)dZdZy}

where η(y,y∗) is a diagonal matrix with ith diagonal element
−∂ log pi(yi, y

∗
i )/∂yi∂yi, θ(y,y∗) is a diagonal matrix with ith diagonal element

−∂ log pi(yi, y
∗
i )/∂yi∂y

∗
i .

The expectation of the first term is given by

E{yT
dZ

T
η(y,y

∗
)dZy} =

∑
E{yidzjiηj(yj , y

∗
j )dzjkyk}

=
∑
j �=i

E{y2
i }E{ηj(yj , y

∗
j )}dz2ji +

∑
i

E{y2
i ηi(yi, y

∗
i )}dz2ii

=
∑
j �=i

αiγjdz
2
ji +

∑
i

uidz
2
ii

where we have usedW = A−1, definitions given in (7), and independence of yis.
The expectation of the second term ofE{d2l} is written as

E{yT
dZ

T
θ(y,y

∗
)dZ

∗
y
∗} =

∑
E{yidzjiθj(yj , y

∗
j )dz

∗
jky

∗
k}

=
∑
j �=i

E{|yi|2}E{θj(yj , y
∗
j )}|dzji|2 +

∑
i

E{|yi|2θi(yi, y
∗
i )}|dzii|2

=
∑
j �=i

βiδj |dzji|2 +
∑

i

vi|dzii|2,

and the third term by

E{ψ(y,y
∗
)
T
dZdZy} =

∑
E{ψi(yi, y

∗
i )dzijdzjkyk}

=
∑

E{yiψi(yi)}dzijdzji =
∑
i,j

dzijdzji

becauseE{yiψi(yi)} = 1 at the stationary point.

Now we can write the expectation of the second-order differential as

E{d2l} = 2Re{
∑
j �=i

αiγjdz
2
ji +

∑
i

uidz
2
ii +

∑
j �=i

βiδj |dzji|2 +

∑
i

vi|dzii|2 +
∑
i,j

dzijdzji}

=
∑
i�=j

[
dzij dzji dz

∗
ij dz

∗
ji

] [
H1 H2
H∗

2 H1

] ⎡
⎢⎢⎣
dz∗ij

dz∗ji

dzij

dzji

⎤
⎥⎥⎦

+
∑

i

[
dzii dz

∗
ii

]
H3

[
dz∗ii
dzii

]
(15)

whereH1 =

[
βjδi 0

0 βiδj

]
,H2 =

[
αjγi 1

1 αiγj

]
,

H3 =

[
vi ui + 1

u∗
i + 1 vi

]
.

Given a real-valued function g∗(y,y), it can be easily shown that the matrix
∂2g/∂y∂yH is a Hermitian matrix using Wirtinger calculus[9]. Since the diagonal
elements of a Hermitian matrix is real-valued, θi is a real-valued function. Thus, the

matricesH =

[
H1 H2
H∗

2 H1

]
andH3 are all Hermitian. If the matricesH andH3

are all positive-definite, then we haveE{d2l} > 0 for any Z.
From [13], H > 0 (positive definite) if and only if H1 > 0 and H1 −

H2H
−1
1 H∗

2 > 0. The first inequality simply implies (10). The positiveness of the
trace and determinant ofH1−H2H

−1
1 H∗

2 give the (13) and (14). SimilarlyH3 > 0
if and only (8) and (9) hold.
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