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ABSTRACT

This work investigates the security issues of the recently pro-
posed secure arithmetic coding (AC), which is an encryption
scheme incorporating the interval splitting AC with a series
of symbol and codeword permutations. We propose a chosen-
ciphertext attack which is capable of recovering the key vec-
tors for codeword permutations with complexity O(N), where
N is the symbol sequence length. After getting the key vec-
tors for codeword permutations, we can remove the code-
word permutation module, and the resulting system has al-
ready been shown to be insecure in the original paper [5].

Index Terms— Cryptanalysis, Arithmetic Coding, Digital
rights management.

1. INTRODUCTION

The problem of efficient multimedia data encryption has re-
cently gained much attention in both academic and industrial
fields [1, 2, 3, 4, 5]. A straightforward approach to achieve
multimedia security is to encrypt the entire data by using a
traditional cryptographic algorithm, such as DES and AES.
However, this kind of method is not computationally efficient,
and many types of advanced multimedia processing cannot be
applied directly in the encrypted bit stream [1, 2, 5].

The recent trend in multimedia encryption has placed more
attention on integrating encryption and compression by in-
troducing randomness into the entropy coder, e.g., Huffman
coder and arithmetic coder [1, 3, 4, 5]. In [4], Wen et al.
modified the traditional AC by removing the constraint that a
single continuous interval is used for each symbol, while pre-
serving the sum of the lengths of intervals allocated to each
symbol [4]. The modified AC is called interval splitting AC,
and it was shown that it can provide certain level of secu-
rity with vanishing coding efficiency penalty [4]. Aiming to
further increase the security while not influencing the coding
efficiency of the interval splitting AC, Kim et al. proposed the
secure AC by applying a series of permutations at the symbol
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sequence and the codeword of the interval splitting AC. Secu-
rity analysis results using cipher-only attack, known-plaintext
attack and chosen-plaintext attack show that the secure AC
offers very high security [5].

In this paper, we address the security issues of the secure
AC. Different from the security analysis of the original paper
which is from the angle of the encoder, we investigate this
problem from the perspective of the decoder. This is feasible
since the secure AC is essentially a symmetric cryptosystem.
We present a chosen-ciphertext attack that can successfully
recover the key vectors for codeword permutations with com-
plexity O(N), where N is the symbol sequence length. After
getting these key vectors, we can remove the codeword per-
mutation module, and the resulting system has already been
shown to be insecure in the original paper [5].

The rest of this paper is organized as follows. Section 2
briefly introduces the interval splitting AC and the secure AC.
Section 3 shows the chosen-ciphertext attack for breaking the
secure AC. We conclude this paper in Section 4.

Notations: Throughout this paper, we restrict our atten-
tion to the binary interval splitting AC. For a binary codeword
C, we denote (C)d as its decimal representation. For exam-
ple, (011)d = 2−2 + 2−3 = 0.375. Let S = s1s2 · · · sN

and S′ = s′1s
′
2 · · · s′N be two binary symbol sequences of the

same length N . We define the Hamming distance between
them, denoted by dH(S, S′), as the number of positions in
which the corresponding symbols are different.

2. INTERVAL SPLITTING AC AND SECURE AC

In the traditional AC, the intervals associated with each sym-
bol are continuous. In the interval splitting AC, however, this
condition has been removed, and a more generalized con-
straint that the sum of the lengths of the one or more intervals
associated with each symbol should be equal to its probability
has been utilized [5]. This is achieved by splitting the inter-
vals according to a sequence of splitting keys known both to
the encoder and the decoder. More details about how to split
the intervals and the constraints involved in the interval split-
ting can be found in [4].

In order to increase the security of the interval splitting
AC, in [5], the secure AC was proposed, in which the major
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Fig. 1. Codeword permutations using the key vectors in (1),
where the numbers in the blocks denote the bit indexes with
left-to-right order. In other words, the codeword c1c2 · · · c28

becomes c28c12 · · · c20 after the codeword permutations.

difference from the interval splitting AC is that two permu-
tation modules are applied to the symbol sequence and the
codeword, respectively. The codeword permutations consist
of two rounds of permutations, which begin by raster-order
mapping a codeword into a block of 4 columns. From the
perspective of the decoder, in the first round, the codeword is
subject to two key-driven cyclic shift steps, one operating on
the rows and one on the columns. Then the last four bits of the
result are removed, and used to generate the key vectors used
for permuting the remaining bits. After the permutations of
the remaining bits, the last four bits are re-appended and the
data is read out in raster-order to form the final bit stream. An
example can be illustrated in Fig. 1, where the key vectors for
permutations are shown below

RC1 = [1 3 1 2 0 3 2]; CC1 = [6 3 5 2]
RC2 = [2 1 3 0 1 2]; CC2 = [4 5 1 3] (1)

Here RC1, CC1, RC2 and CC2 are used for the first round
of row and column permutations, and the second round of row
and column permutations, respectively.

These permutations have been shown to be efficient to re-
sist the cipher-only attack, known-plaintext attack and chosen-
plaintext attack. More details please refer to [5].

3. CRYPTANALYSIS OF SECURE AC

In the original paper [5], the stand-alone interval splitting AC
and the hybrid scheme combining interval splitting AC and
symbol permutations only have been shown to be insecure.
Hence, in order to break the secure AC, it suffices to recover
the key vectors for codeword permutations. In this section,
we restrict our attention to the decoder. In the following sec-
tion 3.1, we first consider a simplified case using static key

vectors, where both the first round and the second round of
codeword permutations are independent with the input code-
word. We then in section 3.2 study the case using adaptive key
vectors, where the key vectors for the second round of permu-
tations depend on the last four bits of the result after the first
round of permutations. We show that our method in section
3.1 still works subject to some appropriate modifications.

3.1. Static key vectors for codeword permutations

Before going into the details of our method, let us briefly out-
line the core idea of our approach by giving an example. Sup-
pose we have already known that the 2rd, 4th, and 6th bits in
a codeword of length Nc will become the last three bits after
the codeword permutations. We now wish to find which bit
becomes the (Nc − 3)th bit after the permutations. We let
C = c1c2 · · · cNc

, where

ci =
{

1 for i ∈ {2, 4, 6}
0 otherwise. (2)

Define a set A = {a|a ∈ Z+ and 1 ≤ a ≤ Nc}. We then let
C ′(j) = c′1c

′
2 · · · c′Nc

, for j ∈ A− {2, 4, 6}, where

c′i =
{

1 for i = j
0 otherwise. (3)

For example, if Nc = 8, then C = 01010100 and C ′(1) =
10000000. After the permutations, the permuted versions of
C and C ′(j) become C̃ = 00 · · · 0111 and C̃ ′(j) = 00 · · · 01︸ ︷︷ ︸

j′

0 · · · 0,

where j′ is the location of the jth bit after permutations. If it
happens that j′ = Nc−3, then (C̃ ′(j))d−(C̃)d = (00 · · · 01)d =
2−Nc , which is the minimum distance between two binary
numbers of length Nc. On the contrary, if j′ �= Nc − 3, then
(C̃ ′(j))d−(C̃)d ≥ 2−Nc +2−Nc+n, where n = 3 is the num-
ber of bits whose locations after the permutations have been
known. This leads to the fact that if j′ = Nc − 3, then the
decoded symbol sequences of C and C ′(j) are very similar,
even identical if Nc is sufficiently large, which can be mea-
sured by their Hamming distance. While if j′ �= Nc − 3, then
it is very likely that the decoded symbol sequences differ in
many symbols. In this way, we can determine which bit be-
comes the (Nc − 3)th bit after the permutations. Following
similar fashion, we can establish the correspondence of the
bit locations before and after the permutations.

For the sake of better illustration, in the following, we
include an example with the following configurations.

• p(A) = 2/3 and p(B) = 1/3. N = 16.

• The key vector for interval splitting AC is

K =
[ 5
16
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(4)
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• The key vectors for symbol permutations

RS = [1 2 1 3]; CS = [0 3 1 2] (5)

where RS is the vector for row permutations and CS
is the vector for column permutations.

• The key vectors for codeword permutations are shown
in (1).

Using chosen-ciphertext attack to find the key vectors for
codeword permutations, we perform the following steps.

Step 1: Let C0 = c1c2 · · · cNc,max = 00 · · · 0, where
Nc,max = �−N log2 p(B)� + 2. Input the codeword C0 to
the decoder, and obtain the decoded symbol sequence S̃0.

Step 2: Let C ′(j) = c′1c
′
2 · · · c′Nc,max

= 00 · · · 01︸ ︷︷ ︸
j

0 · · · 0,

for 1 ≤ j ≤ Nc,max. Input the codewords C ′(j) to the de-
coder, and obtain the corresponding symbol sequences S̃j .

Table 1 gives the experimental results of the codeword
and symbol sequence pairs using the configurations defined
above, where only the data with minimum Hamming distance
from S̃0 are kept. It can be seen that S̃i has zero Hamming
distance from S̃0, where i ∈ I = {4, 7, 8, 13, 14, 15, 16, 20, 21,
24, 26}. We can then decide that ci, for i ∈ I, correspond to
the last eleven bits after the codeword permutations, although
so far we still do not know their order. It can be found that
this result is consistent with Fig. 1.

Step 3: Let C = c1c2 · · · cNc,max , where

ci =
{

1 for i ∈ I
0 otherwise. (6)

Define A = {a|a ∈ Z+ and 1 ≤ a ≤ Nc,max}. Let also
C ′(j) = c′1c

′
2 · · · c′Nc,max

, for j ∈ A− I, where

c′i =
{

1 i = j
0 otherwise. (7)

Input C and C ′(j) to the decoder and obtain their decoded
symbol sequences, denoted by S̃ and S̃j , respectively.

Table 2 gives the experimental results of the decoded sym-
bol sequences of C and all C ′(j) using aforementioned con-
figurations, where only the data with minimum Hamming dis-
tance from S̃ are shown. It should be noted that in this step
we only need to decode C, and all the other results can be
directly obtained from Step 1, although these results are not
shown in Table 1 due to limited space. Since S̃10 and S̃18

have zero Hamming distance from S̃, we can decide that the
10th and 18th bits correspond to the 16th and 17th bits after
the permutations, although so far we still do not know their
order.

Following similar steps, we can uniquely recover the lo-
cation relationship of the remaining bits before and after the
codeword permutations. Fig. 2 gives what we have already
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Fig. 2. The result after performing the first four steps.

found about the bit location relationship before and after the
codeword permutations, where Xi ∈ {10, 18} and Yi ∈ {4, 7, 8,
13, 14, 15, 16, 20, 21, 24, 26}.

To recover the key vectors for codeword permutations,
a straightforward approach is to first determine the order of
Xi and Yi, based on which, derive the key vectors. How-
ever, we here propose an approach without determining the
order of Xi and Yi. Our strategy is to first reduce the two
rounds of permutations partially, and based on the nature of
the cyclic permutations, to recover the key vectors. In order to
partially reduce the two rounds of permutations, we decrease
the lengths of the codewords input to the decoder, namely, we
make Nc < Nc,max. We perform the following.

Step 4: Let Nc = Nc,max − 10, and define C0 and C ′(j)
similar to Step 1 and Step 2, by replacing Nc,max with Nc.
Input C0 and C ′(j) to the decoder and obtain their decoded
symbol sequences.

Here we choose Nc = Nc,max − 10 is because, from the
result of Step 1 and Step 2, we know that in this case, we can
detect a unique j such that C ′(j) will be decoded into S̃0.
Notice that the last four bits of the permuted codeword af-
ter two rounds of permutations are identical to those after the
first round of permutations, as can also be seen from Fig. 1.
We can determine that the obtained jth bit is the last bit after
the first round of permutations, based on which we can derive
one column permutation parameter CC1,m and one row per-
mutation parameter RC1,n for the first round of permutations,
where CC1,m and RC1,n are the mth and the nth element of
CC1 and RC1, respectively, 0 ≤ m ≤ 3, and 0 ≤ n ≤ 6.

Using a very similar technique as shown in Step 1, Step 2
and Table I, we can readily find that, in this case, the 7th bit
becomes the last bit after the codeword permutations. Since
the 7th bit originally locates at (2, 3), we then can determine
that RC1,1 = 3 and CC1,1 = 3.

Increasing Nc gradually to Nc = Nc,max − 9, Nc =
Nc,max − 8, and Nc = Nc,max − 7, and performing very
similarly as shown in Step 4, we can get RC1,4 = 0 and
CC1,2 = 5; RC1,2 = 1 and CC1,3 = 2; and CC1,0 = 6.

Since now we have already known CC1, RC1,1, RC1,2,
and RC1,4, we can determine the exact locations of ci, where
i ∈ {5, 6, 7, 8, 9, 10, 11, 12, 17, 18, 19, 20}, after the first round
of permutations. Then, based on these locations and the prop-
erty of the cyclic permutations, we can recover all the remain-
ing permutation parameters for both rounds of permutations.
From example, we know that after the first round of permu-
tations, the location of the 6th bit is (1,1). After the second
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Table 1. Experimental Results of Step 1 and Step 2.

Input Codeword Symbol Sequence Hamming Distance

C0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃0: A A B A B A A B B A B A B A B B —
C ′(4): 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃4: A A B A B A A B B A B A B A B B 0
C ′(7): 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃7: A A B A B A A B B A B A B A B B 0
C ′(8): 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃8: A A B A B A A B B A B A B A B B 0
C ′(13): 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃13: A A B A B A A B B A B A B A B B 0
C ′(14): 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃14: A A B A B A A B B A B A B A B B 0
C ′(15): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃15: A A B A B A A B B A B A B A B B 0
C ′(16): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 S̃16: A A B A B A A B B A B A B A B B 0
C ′(20): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 S̃20: A A B A B A A B B A B A B A B B 0
C ′(21): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 S̃21: A A B A B A A B B A B A B A B B 0
C ′(24): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 S̃24: A A B A B A A B B A B A B A B B 0
C ′(26): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 S̃26: A A B A B A A B B A B A B A B B 0

Table 2. Experimental Results of Step 3.

Input Codeword Symbol Sequence Hamming Distance

C: 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 0 S̃: A A A A B A A B B A B A B A B B —
C ′(10): 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S̃10: A A A A B A A B B A B A B A B B 0
C ′(18): 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 S̃18: A A A A B A A B B A B A B A B B 0

round of permutations, its location is (2,3). We then can de-
rive that R2,0 = 2 and C2,2 = 1. Due to the limited space,
we omit the details here.

Now we roughly calculate the complexity of our proposed
attack. In Step 1 and Step 2, we need to decode Nc,max + 1
different codewords, and in each of the following steps, we
only need to decode one more codeword. This results in the
complexity of recovering the key vectors for codeword per-
mutations is approximately 2Nc,max = 2�−N log2 p(B)� de-
coding operations, which is of the order O(N).

3.2. Adaptive key vectors for codeword permutations

To deal with this case, we first face the problem of determin-
ing the locations of the bits that turn out to be the last four
bits after the codeword permutations. Using a very similar
approach as shown in Step 4 in section 3.1, we can readily
find these locations. Since for different last four bits, the key
vectors for the second round of permutations are different,
which leads to the fact that there are 24 = 16 distinct key
vectors that have to be found. Suppose now we wish to find
the key vectors for the case that the last four bits are equal to
d1, d2, d3, d4, respectively. As we have already known the
locations of bits that will eventually become the last four bits
after the permutations, we can fix the bits in these locations
to be d1, d2, d3, d4, respectively. After that, the key vectors
become fixed. The method in section 3.1 can then be applied.

4. CONCLUSIONS

In this paper, we have addressed the security issues of the
secure AC. We have proposed a chosen-ciphertext attack to
recover the key vectors for codeword permutations with com-
plexity O(N), where N is the symbol sequence length.
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